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rative neural networks for
accurate, diverse, and robust nanoparticle design†
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Zarin Tasnim Rakhy,c Harinarayan Das,d Mahmudur Rahman,e Abul Kalam Azad,a
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Tandem neural networks for inverse design can only make single predictions, which limits the diversity of

predicted structures. Here, we use conditional variational autoencoder (cVAE) for the inverse design of

core–shell nanoparticles. cVAE is a type of generative neural network that generates multiple valid

solutions for the same input condition. We generate a dataset from Mie theory simulations, including ten

commonly used materials in plasmonic core–shell nanoparticle synthesis. We compare the performance

of cVAE with that of the tandem model. Our cVAE model shows higher accuracy with a lower mean

absolute error (MAE) of 0.013 compared to 0.046 for the tandem model. Robustness analysis with 100

test spectra confirms the improved reliability and diversity of cVAE. To validate the effectiveness of the

cVAE model, we synthesize Au@Ag core–shell nanoparticles. cVAE model offers high accuracy in

predicting material composition and spectral features. Our study shows the potential of cVAEs as

generative neural networks in producing accurate, diverse, and robust nanoparticle designs.
1 Introduction

Engineered nanoparticles (ENPs) have attracted a lot of atten-
tion in elds such as medicine, healthcare,1 neuroengineering,2

environmental remediation,3 and agriculture.4 As a result, there
is a substantial need for the design of nanoparticles (NPs) with
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certain optical properties. Designing NPs with specic size,
shape, and material composition is essential for optimizing
their properties in targeted applications.5–7 The approach to
designing ENPs can typically be framed in two ways.8,9 The rst
way is as a forward problem, in which the designer sets a target
electromagnetic response and iteratively evaluates ENP designs.
Forward problems are usually well-posed as they follow J.
Hadamard's classical idea that requires the existence, unique-
ness, and stability of a solution. The forward problem can be
solved using nite-difference time-domain, nite element
methods, and Mie theory. The second way is as an inverse
problem, whichmaps a desired electromagnetic response to the
ENP design. Inverse problems are oen ill-posed because there
can be many geometries that correspond to the desired prop-
erties of the nanoparticle, violating Hadamard's uniqueness
condition.

Conventionally, inverse problems are solved using gradient-
based techniques such as topology optimization10 and gradient-
free methods such as genetic algorithms and particle swarm
optimization. Although useful, these methods have drawbacks
in nanophotonic inverse designs. For example, gradient-based
algorithms oen converge to local minima, and gradient-free
methods can suffer from slow convergence and high computa-
tional costs.11 To solve these inadequacies, there has been
a recent emergence in the incorporation of deep learning
approaches in the nanophotonic inverse designs.12 In the
inverse design model, the electromagnetic (EM) response serves
as the input, and the model directly generates the correspond-
ing structure as the output. Two types of deep neural
© 2025 The Author(s). Published by the Royal Society of Chemistry
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architectures, deterministic and generative networks, can be
utilized for nanophotonic inverse design. In nanophotonics, the
task of a deterministic network (e.g., basic feed-forward neural
network) for inverse design to deduce geometric parameters
from optical properties is “ill-posed”. This is because of
multiple potential solutions for a given input condition (one-to-
many solutions). Consequently, during training, such networks
oen converge to non-physical averages between different
solutions, learning invalid solutions that hurt the network's
performance. To address the challenges of inverse networks,
researchers use tandem architectures that integrate both an
inverse network (mapping optical response to structure) and
a forward solver network (mapping structure to optical
response).13 Tandem networks are effective in the inverse design
of numerous nanophotonic structures.13–15 He et al. utilized
a tandem model to predict the structures of multilayered
nanoparticles.16 Although tandem networks offer good accu-
racy, they are limited to providing a single prediction for
a specic inverse design task, even if multiple designs can
achieve the target. This limitation negatively impacts the
diversity of the predicted structures. Diverse designs aid the
fabrication process by offering more candidate options, which
is especially benecial for shapes that are challenging to
manufacture at the nanoscale. Generative networks, such as
generative adversarial networks (GANs) and variational
autoencoders (VAEs), can stochastically output multiple
different predictions to address this limitation.17,18 These
networks can generate numerous optimized solutions based on
variations in their latent space which contains an abstraction of
learned parameters for diverse generations. VAEs encode input
data into a lower-dimensional latent space and then decode it
back while creating a compact, continuous, and normally
distributed latent space. A conditional variational autoencoder
(cVAE) allows further control in such generations by imposing
a condition, which is utilized in inverse designing to achieve
desired attributes.19,20 This lets the cVAE network explore the
latent space and generate multiple valid designs for the same
required condition. However, a comprehensive literature search
revealed a lack of research focused on the applications of
generative neural networks to inverse design ENPs.

Here, we use generative neural network architectures to
predict core–shell nanoparticle structures based on specic
optical responses. Recent reports indicate that cVAEs are the
most efficient generative neural networks for the nanophotonic
inverse design task.18 Therefore, we focus on cVAEs for nano-
particle inverse design. We also evaluate the effectiveness of
cVAE by comparing results with those obtained from the
tandem neural network. For such comparisons, we use evalua-
tion metrics of accuracy, robustness, and diversity. We present
a dataset obtained from Mie theory simulations, utilizing the
Python module Scattnlay.21 Our results from comparing the
input condition spectra with the predicted particle spectra show
that the tandem network has a mean absolute error (MAE) of
0.046, while the cVAE has an MAE of 0.013. The lower MAE
signies better accuracy for the cVAE model. Our robustness
analysis with 100 test spectra shows that the cVAE has higher
robustness compared to the tandem network. Furthermore, the
© 2025 The Author(s). Published by the Royal Society of Chemistry
cVAE model exhibits signicant diversity, generating multiple
valid solutions for the same input condition. To validate the
effectiveness of the cVAE model, we synthesize Au@Ag core–
shell nanoparticles. Our cVAE model demonstrates high accu-
racy in ENP inverse design and can correctly predict key plas-
monic modes. Our existing dataset, which will be publicly
accessible on GitHub for further research, can be extended to
accommodate multilayer nanoparticle inverse design.
2 Methodologies
2.1 Dataset generation

Ten materials were selected that are commonly used in the
synthesis of plasmonic core–shell nanoparticles: silver (Ag),22

aluminum (Al),23 gold (Au),24 copper (Cu),25 gallium arsenide
(GaAs),26 indium arsenide (InAs),27 indium phosphide (InP),28

molybdenum (Mo),29 silicon (Si),30 and silicon dioxide (SiO2).31

Refractive indices for these materials were obtained from
various sources32–39 using the online database “Refracti-
veIndex.INFO”.40 Each material was later assigned an integer ID
ranging from 1 to 10 (ESI Table S1†). The material ID for the
core and shell layers were indicated as m1 and m2, while the
thickness of the core (radius) and shell were indicated as t1 and
t2. We used Scattnlay, a Python module for simulating light
scattering by multilayered spheres based on Mie theory, to
simulate 114 750 samples. Structural parameters (t1, t2) were
both uniformly sampled in the ranges of [1, 99] nm, but also
ensuring that t1 + t2 does not exceed 100 nm. The absorption
cross-section spectrum was computed between the [300,
800] nm wavelength range with a 2.505 nm step size. In both
models (i.e., cVAE and tandem neural network), we used 87 210
samples for training, 21 802 samples for validation, and the rest
5738 samples for testing purposes. The spectra were normalized
to values between 0 and 1 for improved training of neural
network models. The dataset consisted of 205 columns, where
the rst two columns represented the material IDs m1 and m2

for the core and shell sections, respectively. The next two
columns contained their corresponding thicknesses t1 and t2.
The dielectric host medium, either air (0) or water (1), was
indicated in the h column; only the water medium was
considered for this work. The remaining 200 columns con-
tained the absorption cross-section data for each nanosphere.
2.2 Model architecture and training

Two distinct approaches were explored for inverse design:
a tandem network and a cVAE (ESI Fig. S1†). Both models used
in this work primarily employ a convolutional neural network
(CNN) with ResNet architecture.41 In case of the tandem forward
model, a resNeXt CNN architecture has been employed. Such
resNeXt architecture is a variation on the ResNet architecture
that adds an additional dimension (cardinality) to the resnet
blocks to achieve higher accuracy using similar model
complexity.42 In this case, 1D convolution was performed, and
batch normalization has been done on every skip connection.
The model utilized nine resNeXt blocks, and up-sampling was
done aer every 2 blocks. The inverse model was built by
Nanoscale Adv., 2025, 7, 634–642 | 635
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directly using a resnet CNN architecture. The model utilized 12
resnet blocks, aer which the layers were attened and 4
branches of dense layers were added. Each branch corre-
sponded to the design properties for the core and shell material
and thicknesses. Initially, the forward model was separately
trained and the weights and biases were xed. The forward
model was then used for the training of the inverse model
within the tandem architecture. Once the training process was
completed, the inverse network was saved separately to be used
for inverse design predictions.

In the case of the cVAE model, both the particle design and
optical response (condition) were applied as inputs to the
encoder network, which converted these inputs to the latent
vector. The decoder network, on the other hand, was given the
latent vector and the optical response (condition) as inputs
from which it generated the predicted inverse design. In this
way, the model can be trained on multiple designs for the same
input conditions by changing the latent variables. Hence,
exploring different values in the latent space with the same
input condition can yield multiple valid designs. The model has
a complex architecture that uses resnet CNN branches along
with dense layers and uses four additional reconstruction losses
for the design parameters of the particle. Categorical cross-
entropy was used as a loss function for the core and shell
material predictions, and mean squared error (MSE) was used
as a loss function for the predicted thickness of the layers.
Furthermore, Kullback–Leibler (KL) divergence loss was used
for training the encoder to ensure the proper construction of the
latent z space.43 The entire model consisting of the encoder and
the decoder networks was constructed and trained as a whole,
rather than separately, to implement the process. Aer the
completion of training, the decoder section was separated and
saved to be used for inverse predictions. All the networks were
trained using the AdamW optimizer. Additionally, a callback
function that reduces the learning rate once the training loss
stops improving was utilized. Furthermore, the batch size was
doubled aer every 16 epochs. This adaptive batch size tech-
nique helps by reducing the training time signicantly while
minimally affecting the accuracy.44
2.3 Nanoparticle synthesis

Aer completing the training phase, the performance of the
models was evaluated using spectral input from both theoret-
ical and experimental sources. The theoretical assessment
involved generating a distinct test set of random nanoparticles
via Mie theory. The experimental evaluation of the model
performance was conducted with the use of absorbance spectra
obtained from UV-vis spectroscopic data of the synthesized
Au@Ag core–shell NPs. First, the gold nanoparticles (AuNPs)
were prepared by employing a chemical reduction protocol
using trisodium citrate (TSC) as a reducing agent.45 In a beaker,
approximately 5.2 mL of an aqueous solution of HAuCl4
(approximately 5.0 M) was added to 100 mL of nanopure water.
This solution was vigorously stirred at a speed of 1200 rpm
while being held on a magnetic hot plate. Once the solution
achieved its chilling temperature, a controlled dropwise
636 | Nanoscale Adv., 2025, 7, 634–642
injection of 1% TSC (4 mL) was started, with a 40 seconds
interval between consecutive drops. Subsequently, the mixture
was stirred under the same conditions for 30 minutes; at that
point, the solution became wine-red, indicating the effective
synthesis of AuNPs. The temperature of the nanoparticles was
then reduced to room temperature for further use as the seed
solution for the synthesis of Au@Ag core–shell nanoparticles.

Second, the Au@Ag nanoparticles were prepared by
employing a seed-mediated growth chemical reduction
protocol.46 To achieve this, 15 mL of AuNPs (seed solution) were
placed in a beaker and continuously stirred at room tempera-
ture (25 °C) at a speed of approximately 1200 rpm using
amagnetic hot plate. Aer successive additions of 300 mL of TSC
(approximately 1%) and 9.0 mL of 100 mM ascorbic acid, the
mixture was vigorously stirred for 5 minutes. Then, 90 mL of
AgNO3 (approximately 10 mM) solution was added into the
mixture at a rate of one drop per 40 seconds. The addition of the
specied amount of AgNO3 resulted in a gradual color change of
the solution from wine-red to orange-yellow. Color change
indicated the successful fabrication of Au@Ag core–shell NPs.
2.4 Nanoparticle characterization

Transmission electron microscopy (TEM) imaging was utilized
for particle imagery, enabling the construction of particle size
distributions for both the core and shell sections of the nano-
particles. Subsequently, normal distribution curves were over-
laid on these distributions, with the maxima of these curves
providing the average sizes of the core and shell, approximately
7.3 nm (radius) and 3.6 nm, respectively. Finally, UV-vis spec-
troscopy was employed to obtain absorbance spectra across the
wavelength range of 300 to 800 nm.
3 Results & discussion
3.1 Nanoparticle inverse design using tandem neural
network

One major challenge in the inverse design of nanophotonic
devices is the non-unique mapping between electromagnetic
responses and designs when training deep neural networks.13

The tandem network addresses the problem by cascading
inverse-design and forward-modeling networks (Fig. 1a). The
training process begins with the forward network, which
simulates the underlying physics of the system (Fig. 1a-top
panel) and predicts the optical response based on design
parameters. It is trained using 87 210 samples. The input
parameters include the core material ID (m1), shell material ID
(m2), core thickness (t1), and shell thickness (t2). Material IDs
range from 1 to 10 (ESI Fig. S1†), corresponding to the following
materials: silver (Ag), aluminum (Al), gold (Au), copper (Cu),
gallium arsenide (GaAs), indium arsenide (InAs), indium
phosphide (InP), molybdenum (Mo), silicon (Si), and silicon
dioxide (SiO2). Once the forward network is adequately trained,
an inverse network is introduced, and training takes place in
tandem (Fig. 1a-bottom panel).11 In the inverse model, the
desired optical spectra are provided as conditions to generate
the design parameters (m1, m2, t1, t2), which are then fed into
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4na00859f


Paper Nanoscale Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
D

ec
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

/2
0/

20
26

 8
:4

7:
26

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
the forward network to predict the outcome. As shown in
Fig. 1a, the error is calculated by comparing the predicted
outcome with the desired outcome. This error is then used to
adjust the inverse network (ESI Text 1†). Fig. 1b and S2† show
the training loss and validation loss curves during training. In
Fig. 1c, we present four random samples where the model-
predicted particle designs closely matched the particle designs
that produced the input spectra. The optical response is
calculated for the predicted inverse design (dashed black line)
using Mie theory (Scattnlay) and then compared with the input
condition spectra (solid red line). The results in Fig. 1c reveal
that the corresponding predicted and target spectra are nearly
identical, demonstrating the competence of our model.
However, the four solutions predicted by the tandem model for
four input conditions may not be the only possible solutions.
Therefore, one major disadvantage of the tandem model is that
it can only predict one design at a time. As a result, other
potential solutions remain unexplored. The lack of diversity
represents a signicant limitation, particularly during fabrica-
tion when multiple designs are required. The use of cVAE
addresses this limitation of the tandem network.18
Fig. 1 (a) Basic architecture of a tandem network showing how training
physics to predict the optical response. In the second step, the pretrained
predicted particle designs, and the training error is calculated by compa
network. (b) Training loss (dashed black line) and validation loss (solid re
a tandem model. The solid red lines indicate the condition input spectr
design particles predicted by the inverse model.

© 2025 The Author(s). Published by the Royal Society of Chemistry
3.2 Nanoparticle inverse design using cVAE neural network

A modication of VAEs, the cVAE denes the latent space using
the mean and standard deviation of a normal distribution. It
employs latent variables to encode inputs to outputs (Fig. 2a
and ESI Text 2†). In cVAE, the VAE architecture, which repro-
duces designs through an encoder-decoder setup, is extended
by an additional input called the design condition. By condi-
tioning designs on their physical properties, such as optical
characteristics, a cVAE can be trained as an inverse design
network. As illustrated in Fig. 2a, this additional condition is
incorporated as input to both the encoder and the decoder.
During training, the encoder and decoder are trained together
as a unied model. The design parameters (m1, m2, t1, t2) and
the corresponding optical response (condition) are provided as
inputs to the encoder, which encodes this information into
a low-dimensional latent vector, z. This latent vector, along with
the same optical response (condition), is then provided as input
to the decoder, which predicts the initial design parameters. For
any given condition, different values of the latent vector corre-
spond to multiple possible solutions. Fig. 2b shows the learning
curve of the network. Once training is complete, only the
decoder is utilized for inverse design. This approach allows the
takes place in two steps. Initially, a forward network is trained on the
forwardmodel is taken and used to generate the optical response from
ring the input condition spectra to the one generated by the forward
d line) of the tandem inverse network. (c) Inverse design results from
a, and the dashed black line is the resultant spectra calculated for the

Nanoscale Adv., 2025, 7, 634–642 | 637
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Fig. 2 (a) Schematic of the conditional variational autoencoder (cVAE)
architecture used for inverse design. The design condition is incor-
porated as input to both the encoder and the decoder. The encoder
uses the nanoparticle design (material composition and layer thick-
nesses) and maps the input to a latent vector z, defined by the mean
(mz) and standard deviation (sz) of a normal distribution. The decoder
then takes the latent vector as well as the input condition and
produces a design for the predicted nanoparticle. (b) Training and
validation loss curves for the cVAEmodel. The network is trained using
the AdamW optimizer with an initial batch size of 32 and an initial
learning rate of 0.0002. The model size is 12.33 MB, and the total
training time is 2.6 hours.
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exploration of multiple design solutions for a given target
condition, enhancing the versatility and robustness of the
inverse design process.

The capability to identify multiple possible solutions with
a cVAE is demonstrated in Fig. 3, S3 and S4.† Different regions
of the latent space map to various materials and thickness
predictions for the particle. ESI Fig. S5† illustrates how we
choose z values. First, we consider a search area centered on the
origin (0, 0). Then, we examine a 5 × 5 grid of the latent space
within the search area, input them into the cVAE, and compare
the spectra of the predicted particles with the input spectrum.
The z-value with the lowest MAE is considered the best z-value.
The MAE is calculated using the equation:

MAE ¼ 1
n

Xn
i¼1

��yi � ŷi
��; where yi represents the true values, ŷi

represents the predicted values, and n is the total number of
data points taken on the spectrum. For the next iteration, we
regard the best z-value as the new origin (center) and reduce the
search area to half of its original size. We repeat the process ve
times and take the best result at the end as the nal model
prediction. Fig. 3 represents the z-values found aer ve itera-
tions. This gure is designed to not only show the prediction
results based on the optimal z-values but also to illustrate the
impact of slightly different z-values. From le to right, the z1
value changes by 1 in each graph, and from bottom to top, the z2
value changes by 1. Thus, the entire Fig. 3 functions as a larger
graph with z1 on the x-axis and z2 on the y-axis. Each sub-gure
638 | Nanoscale Adv., 2025, 7, 634–642
represents a point on this larger graph, arranged in a 3 × 3 grid
for better visibility. This visualization demonstrates how the
cVAE model facilitates the exploration of multiple solutions for
this inverse design task.

3.3 Performance comparison of cVAE and tandem network
in nanoparticle inverse design

We compare the performance of the two networks in ENP
inverse design using accuracy, robustness, and diversity. For
this, we create a new test set comprising 500 randomly gener-
ated nanospheres and their spectral responses using Mie theory
simulations. Both the cVAE and tandem networks are tasked
with performing inverse design using these newly generated
condition spectra. The spectral response is then calculated for
the resultant designs using Mie theory. For the cVAE model,
multiple iterations are performed for each condition spectrum
to nd the optimal value for the input latent variables, pre-
dicting the inverse design with the lowest error between the
input and predicted spectral responses.

We use MAE and root mean squared error (RMSE) to evaluate
accuracy, as MAE reects overall performance, while RMSE
highlights the inuence of larger errors.18 The RMSE is

expressed as RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i

ðyi � ŷiÞ2
s

; where yi and ŷi refer to

the target spectrum values and the spectrum values for the
inverse designed structure, respectively, and n is the total
number of data points taken across the spectrum. The tandem
model gives average MAE and RMSE values of 0.046 and 0.068,
respectively, and the cVAE shows average MAE and RMSE of
0.013 and 0.019, respectively (Fig. 4a and S6a†). Both MAE and
RMSE measure the differences between the spectral responses
of the predicted designs and the input condition spectra.
Therefore, lower MAE and RMSE signify better accuracy.

Next, we compare the performance of the two models in
terms of their robustness. From the new test set containing 500
samples, we randomly select 100 test targets and obtain the
inverse predicted structures. We then vary t1 and t2 randomly in
a range of−5% to +5% to create a perturbed set of the predicted
designs and simulate the optical response. We again calculate
the MAE of the perturbed spectra with respect to the target
spectra. Our results show that the cVAE achieves better
robustness, with MAE and RMSE values of 0.054 and 0.076,
respectively, compared to the tandem model, which suffers
from higher MAE and RMSE values of 0.074 and 0.104 (Fig. 4b
and S6b†), respectively. This indicates that the optical
responses of fabricated structures predicted by the cVAE deviate
less from the target responses, demonstrating better fabrication
tolerance. Therefore, our results demonstrate that the genera-
tive cVAE produces more accurate and robust results in the ENP
spectrum inverse design compared to the deterministic tandem
model.

Finally, we compare the diversity of predicted structures
between the two models. The cVAE generates diverse outputs
for the same input condition by sampling from the latent space,
introducing variability in the outputs. This feature is benecial
for nanofabrication tasks, as diverse structures aid fabrication
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4na00859f


Fig. 3 Demonstration of the cVAE in identifying multiple possible solutions. For the input condition spectrum (solid red lines) for a core–shell
nanoparticle with materialsm = [SiO2, GaAs] and thicknesses t = [21, 54], spectra for the predicted designs (dashed black lines) for various latent
vector z values have been shown: (a) z= [−3.04, 1.05],m= [InAs, GaAs], t= [8, 63]; (b) z= [−2.04, 1.05],m= [Ag, GaAs], t= [9, 67]; (c) z= [−1.04,
1.05],m= [Ag, GaAs], t= [13, 59]; (d) z= [−3.04, 0.05],m= [Al, GaAs], t= [10, 61]; (e) z= [−2.04, 0.05],m= [SiO2, GaAs], t= [21, 54]; (f) z= [−1.04,
0.05],m = [SiO2, GaAs], t = [16, 57]; (g) z = [−3.04, 0.95],m = [InP, GaAs], t = [13, 59]; (h) z = [−2.04, −0.95],m = [SiO2, GaAs], t = [21, 54]; (i) z =
[−1.04, −0.95], m = [Cu, GaAs], t = [14, 59].

Paper Nanoscale Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
D

ec
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

/2
0/

20
26

 8
:4

7:
26

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
by offering more candidate designs for challenging shapes.
Conversely, the tandem model provides a single, deterministic
output for a given input, limiting its diversity. In accuracy
calculations, we select the best solution (the closest match to
the desired spectrum) by minimizing MAE. This approach
impacts the cVAE's diversity. If researchers prioritize diversity,
they can select the top n structures whose spectra best match
the desired spectrum instead of just the best one. These top n
structures provide a diverse set of solutions close to the target.

To show the diversity of cVAE, we select a test spectrum
(target), sample the latent space for potential solutions, and
calculate the MAE between each potential solution and the
target input. Fig. 5 (ESI Fig. S7†) shows the MAE (RMSE)
distributions for a particular test target. The use of cVAE
provides multiple diverse nanoparticle structures that match
the desired spectrum to varying degrees (Fig. 5). This diversity
in predictions offers exibility in choosing the best structure
based on additional criteria like manufacturability or cost. The
tandem model, on the other hand, provides a single, highly
© 2025 The Author(s). Published by the Royal Society of Chemistry
optimized structure that closely matches the desired spectrum,
focusing on precision and suitability when a specic, optimal
solution is required.

To further compare the performance of cVAE in ENP spec-
trum inverse design, we synthesize Au (core)–Ag (shell) nano-
particles. As evident in our TEM image (Fig. 6a), the synthesized
nanoparticles are not completely spherical and isotropic in
composition; the core and shell thicknesses are not symmet-
rical throughout the particle. Furthermore, these particles
exhibit a wide range of sizes, which affects their absorbance
spectra and, in turn, the model predictions. These factors
combined hinder the ability of an inverse design network to
completely match the synthesized particles. Even so, using the
cVAE model, by probing the z-space (ESI Fig. S5†), we nd that
the most optimized design closely matches the experimental
measurements for z = [2.32, – 1.26].

Fig. 6b compares the experimental absorption cross-section
given to the models as the input condition (red curve) and the
simulated response from the predicted inverse design particles
Nanoscale Adv., 2025, 7, 634–642 | 639
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Fig. 4 Comparison of MAE between the spectral responses of the
predicted designs and the input condition spectra for both the tandem
model and the cVAE model. (a) Scatter plot showing the MAE for 500
randomly generated nanospheres. The cVAE model demonstrates
better performance with a mean MAE of 0.0133 compared to 0.0458
for the tandemmodel. (b) Scatter plot showing the robustness analysis
with 100 test spectra. The cVAE model achieves a mean MAE of 0.054
compared to 0.074 for the tandemmodel, indicating better fabrication
tolerance.

Fig. 5 MAE distributions in the latent space for a particular test target.
The figure illustrates the cVAE's ability to provide multiple diverse
nanoparticle structures that match the desired spectrum to varying
degrees. Different regions in the figure, likely to give different design
parameters, can be seen exhibiting low MAE. The color bar indicates
the MAE values, with white representing the lowest MAE and red
representing the highest MAE.

Fig. 6 (a) TEM image of the synthesized Au (core)–Ag (shell) nano-
particles, showing non-spherical shapes and asymmetrical core and
shell thicknesses. (b) Comparison of the experimental absorption
cross-section (given as the input condition) and the simulated
response from the predicted inverse design particles from both the
tandem and cVAE models. The cVAE model demonstrates a closer
match to the target spectrum, highlighting its superior performance.
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from both the tandem (dashed blue curve) and cVAE (dashed
black curve) models. The tandem model essentially predicts
a single-layered gold nanoparticle with a radius of 53.5 nm. On
the other hand, the cVAE model, due to its advantageous
diversity and robustness, shows a close match to the target
spectrum, resulting in a low MAE despite the thicknesses being
signicantly different from the true values (Fig. 6b). ESI Fig. S8†
further illustrates that multiple solutions exist where the pre-
dicted spectrum closely matches the target spectrum with
varied geometrical parameters. The cVAE model predicts the
spectral features more correctly. For example, it predicts the
ordinary modes47 of plasmon resonance corresponding to eld
localization at the outer surface of the Ag shell at around
500 nm. It also predicts the extraordinary modes47 of plasmon
resonance at around 375 nm, which corresponds to eld
enhancements at the core–shell interface.
640 | Nanoscale Adv., 2025, 7, 634–642 © 2025 The Author(s). Published by the Royal Society of Chemistry
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4 Conclusion

We propose a cVAE network for the inverse design of core–shell
nanoparticles and compare its performance with that of
a tandem neural network. We construct a dataset from Mie
theory simulations, which includes ten commonly used mate-
rials in plasmonic core–shell nanoparticle synthesis. The cVAE
model achieves a lower MAE of 0.013 compared to 0.046 for the
tandem model. Lower MAE indicates enhanced accuracy in
predicting the desired optical responses. We conduct a robust-
ness analysis using 100 test spectra. The results conrm that the
cVAE model is more reliable. If we perturb the structural
parameters (thicknesses) and recalculate the spectra, we nd
that the cVAE offers lower MAE and RMSE values compared to
the tandem network. Specically, the cVAE achieved an MAE of
0.054 and an RMSE of 0.076, while the tandem model recorded
an MAE of 0.074 and an RMSE of 0.104. These results show that
the cVAE model produces designs more resilient to minor
deviations in the manufacturing process. Moreover, with the
cVAE model, one can obtain many valid designs corresponding
to the same input condition. This diversity allows exibility in
choosing the best structure based on additional criteria like
manufacturability or cost. In contrast, the tandem model
provides a single, deterministic output, limiting the range of
possible solutions. To validate the cVAE model experimentally,
we synthesize Au@Ag core–shell nanoparticles. The cVAEmodel
accurately predicts both the material composition and the
spectral features of the synthesized nanoparticles. Our ndings
show the potential of cVAEs as powerful generative neural
networks for advancing nanophotonic applications. We will
make the dataset used in this study publicly accessible on
GitHub to support further research and enable extensions to
multilayer nanoparticle inverse design. Future work could
improve the model by incorporating additional experimental
data on colloidal nanoparticles and accounting for factors like
dispersion in solution and nanoparticle agglomeration.
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