Visible light-enabled regioselective chlorination of coumarins using CuCl2via LMCT excitation†
Abstract
An efficient, regioselective chlorination of coumarins using Earth-abundant and cost-effective CuCl2 under visible light irradiation is reported. A key feature of this protocol is the photocatalytic dissociation of the copper(II) complex in acetonitrile through ligand-to-metal charge transfer (LMCT) to give the chlorine atom which then selectively chlorinates the coumarin. This method can chlorinate a broad scope of coumarins with either electron-withdrawing or electron-donating substituents to regioselectively afford 3-chlorocoumarins in good to excellent yields and can be further extended to other electron-deficient heterocycles and olefins such as flavones, 8-methoxypsoralen and naphthoquinones.