Issue 9, 2008

The use of gold nanoparticles in diagnostics and detection

Abstract

The widespread use of gold nanoparticles (GNPs) as labels in diagnostics and detection is due to a unique combination of chemical and physical properties that allow biological molecules to be detected at low concentrations. In this critical reviewdetection methods based on GNPs are divided up and discussed based on the way in which signals are generated in response to specific target molecules. Particular attention is devoted to methods that allow target molecules to be detected with the unaided eye because these, more than any other, harness the full range of properties that make GNPs unique. Methods that are discussed include those in which specific target molecules induce a visible colour change, chromatographic methods that allow non-specialized users to perform sophisticated tests without additional equipment and methods in which trace amounts of GNPs are rendered visible to the unaided eye by catalytic deposition of a metal such as silver. The use of metal deposition as a means of enhancing the signal for optical and electrical detection is also reviewed. The other detection methods included in this review are based on interactions between GNPs and molecules located in close proximity to their surface. These include methods in which light emission from such molecules is enhanced (surface enhanced Raman scattering) or quenched (fluorescence), and methods in which the accumulation of specific target molecules induce subtle changes in the extinction spectra of GNPs that can be followed in real time with inexpensive equipment (166 references).

Graphical abstract: The use of gold nanoparticles in diagnostics and detection

Article information

Article type
Critical Review
Submitted
25 Mar 2008
First published
16 Jul 2008

Chem. Soc. Rev., 2008,37, 2028-2045

The use of gold nanoparticles in diagnostics and detection

R. Wilson, Chem. Soc. Rev., 2008, 37, 2028 DOI: 10.1039/B712179M

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements