Issue 3, 2024

High performance nonenzymatic electrochemical sensors via thermally grown Cu native oxides (CuNOx) towards sweat glucose monitoring

Abstract

Diabetes, which is the seventh leading cause of death globally, necessitates real-time blood glucose monitoring, a process that is often invasive. A promising alternative is sweat glucose monitoring, which typically uses transition metals and their oxide nanomaterials as sensors. Despite their excellent surface-to-volume ratio, these materials have some drawbacks, including poor conductivity, structural collapse, and aggregation. As a result, selecting highly electroconductive materials and optimizing their nanostructures is critical. In this work, we developed a high-performance, low-cost, nonenzymatic sensor for sweat glucose detection, using the thermally grown native oxide of copper (CuNOx). By heating Cu foil at 160, 250, and 280 °C, we grew a native oxide layer of approximately 140 nm cupric oxide (CuO), which is excellent for glucose electrocatalysis. Using cyclic voltammetry, we found that our CuNOx sensors prepared at 280 °C exhibited a sensitivity of 1795 μA mM−1 cm−2, a linear range up to the desired limit of 1.00 mM for sweat glucose with excellent linearity (R2 = 0.9844), and a lower limit of detection of 135.39 μM. For glucose sensing, the redox couple Cu(II)/Cu(III) oxidizes glucose to gluconolactone and subsequently to gluconic acid, producing an oxidation current in an alkaline environment. Our sensors showed excellent repeatability and stability (remaining stable for over a year) with a relative standard deviation (RSD) of 2.48% and 4.17%, respectively, for 1 mM glucose. The selectivity, when tested with common interferants found in human sweat and blood, showed an RSD of 4.32%. We hope that the electrocatalytic efficacy of the thermally grown CuNOx sensors for glucose sensing can introduce new avenues in the fabrication of sweat glucose sensors.

Graphical abstract: High performance nonenzymatic electrochemical sensors via thermally grown Cu native oxides (CuNOx) towards sweat glucose monitoring

Supplementary files

Article information

Article type
Paper
Submitted
09 Jul 2023
Accepted
08 Sep 2023
First published
11 Sep 2023

Analyst, 2024,149, 712-728

High performance nonenzymatic electrochemical sensors via thermally grown Cu native oxides (CuNOx) towards sweat glucose monitoring

M. M. Alam and M. M. R. Howlader, Analyst, 2024, 149, 712 DOI: 10.1039/D3AN01153D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements