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The growing interest in sustainable space exploration has brought in-situ resource utilization (ISRU)
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to the forefront of planetary science. This study presents an integrated approach to autonomous min-

eral identification for space mining by combining Laser-Induced Breakdown Spectroscopy (LIBS) with
supervised machine learning (ML). A dataset of over 400 high-resolution LIBS spectra representing

25 mineral classes was collected under simulated low-pressure conditions to replicate extraterrestrial

environments. The raw spectra were preprocessed using wavelet-based denoising to reduce random

noise, baseline correction to remove background continuum, and spectral normalization to account

for intensity variations. To simplify the data and enhance classification performance, three feature
selection methods were applied: Principal Component Analysis (PCA), which identifies directions of
maximum variance to reduce data dimensionality; Variance Thresholding, which removes spectral fea-

tures with negligible variability across samples; and Random Forest-based feature selection (RF-FS),

which ranks wavelengths by their importance for classification. Several classification algorithms were

evaluated, with test accuracies reaching up to 89.3%. The best results were achieved using Random

Forest and Logistic Regression models trained on features selected by RF-FS, showing strong general-

ization to previously unseen samples. This work demonstrates the potential of LIBS-ML integration

for fast, robust, and accurate mineral classification, including reliable identification of dominant

phases in mineral mixtures in planetary environments. The approach also provides interpretability

and classifier confidence estimation, supporting adaptive autonomous mineral identification for future

robotic exploration missions.

1 Introduction

Human relationship with celestial treasures dates back to the
dawn of civilizations. Ancient societies integrated the night sky
into their myths, rituals, and material culture, often attributing
divine significance to meteoritic materials. A striking example
is Pharaoh Tutankhamun’s iron dagger, forged from meteoritic
metal. In a broader sense, the Sun has served as the earliest and
most enduring extraterrestrial resource, providing light, warmth,
and the foundation of agriculture. In modern times, this natu-
ral inheritance has evolved into the strategic use of solar energy
in space missions2. These historical layers illustrate how our en-
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gagement with the cosmos has gradually transformed from sym-
bolic reverence to the practical pursuit of off-Earth resources.

By the late 19™ century, the idea of utilizing resources from
beyond Earth began to appear in speculative literature. One no-
table early example is Garrett P. Serviss’s Edison’s Conquest of
Mars (1898), which describes the extraction of gold from aster-
oids, foreshadowing modern concepts of asteroid mining. By the
20th century, forward thinkers began imagining how we might
utilize resources from beyond our planet. Konstantin Tsiolkovsky,
a Pioneering rocket scientist, set the groundwork for space travel
and dreamed of humans expanding into space, supported by ma-
terials found on other worlds=. Afterwards, in the mid-1900s,
innovators like Arthur C. Clarke played a key role in popularizing
these concepts by introducing them to the public through science
fiction and futuristic ideas, inspiring many to imagine mining the
Moon and asteroids®, and laying the foundation for today’s seri-
ous discussions about space resource utilization (SRU)=. These
concepts evolved into institutional strategies emphasizing the im-
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portance of in-situ resource utilization (ISRU), reducing reliance
on Earth-supplied materials, and enabling affordable long-term
space missions®.

Defining "space resources" has become increasingly critical: a
material qualifies if it is present in a useful concentration, ex-
tractable with foreseeable technology, and serves practical space
operations or markets. Recent efforts are underway to adapt ter-
restrial mineral classification standards, such as the Lunar Ore
Reserves Standard (LORS-101)Z, explicitly designed to catego-
rize extraterrestrial deposits by feasibility and utility. Over re-
cent decades, space resource mapping through remote sensing
and sample analysis has progressed significantly=>. Agencies have
identified promising concentrations of elements such as Fe, Ti,
and Si, and extensive deposits of water ice in the Moon’s polar
regions, considered to be important for future propellant produc-
tion®1Y, Despite promising orbital and remote sensing data, the
actual composition, spatial distribution, and accessibility of these
extraterrestrial resources remain uncertain. Reliable in situ mea-
surements are therefore crucial for validating resource models
and developing effective extraction strategies'l. Laser-Induced
Breakdown Spectroscopy (LIBS) has emerged as a powerful tool
for real-time geochemical analysis in space exploration2, LIBS
enables direct analysis of unpreprocessed, unpolished surfaces
with almost any geometry, making it highly suitable for elemen-
tal characterization in extraterrestrial environments. While not
directly involved in material extraction, LIBS plays a critical role
in resource prospecting and compositional mapping, foundational
steps toward the realization of extraterrestrial mining. Unlike tra-
ditional methods, LIBS operates effectively in low gravity and vac-
uum, providing real-time elemental composition analysis without
the need for extensive sample preparation or complex instrumen-
tation, making it a suitable analytical technique for different plan-
etary missions 2712, Despite these advantages, interpreting LIBS
spectra in field conditions is challenging due to spectral complex-
ity. Here, recent advances in Machine Learning (ML) offer a trans-
formative approach. ML algorithms trained on known spectral
signatures enable efficient classification of minerals from noisy
or novel spectra, significantly improving speed and accuracy in
situ. On Earth, LIBS has proven its versatility in analyzing di-
verse mineral and ore samples, including pyrite (FeS;), hematite
(Feo03), molybdenite (MoS;), and chalcopyrite (CuFeS5), many
containing economically valuable metals like copper, iron, zinc,
and tungsten. This study features a mineral campaign including
copper ores (azurite, malachite), iron ores (hematite, magnetite),
and rarer materials like bauxite (aluminum ore) and wolframite
(tungsten ore), simulating the diversity expected in extraterres-
trial mining environments.

However, LIBS alone cannot efficiently handle the vast, com-
plex spectral datasets generated during extraterrestrial mining.
This challenge aligns with the broader scientific priorities high-
lighted by the Mars Sample Return initiative, which emphasizes
the necessity for precise, rapid, and robust analytical techniques
to exploit returned planetary samples©1 fully. In this study, we
focus on the ultraviolet (UV) spectral region under atmospheres
of 10 and 10~2 mbar, closely simulating the low-pressure con-
ditions encountered in space. ML provides a transformative so-
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Fig. 1 Top view of a Bauxite sample as an example of a mineral used in
LIBS analysis. The white rectangular box marks the area where the laser
spots were applied during measurements.

lution, enabling the accurate classification and analysis of di-
verse mineral samples in real-time. Unlike deep learning meth-
ods that require large datasets, ML algorithms such as Random
Forest (RF), Support Vector Machines (SVM), K-Nearest Neigh-
bors (KNN), and Logistic Regression (LR) excel in small-data en-
vironments typical of space missions. These approaches effec-
tively manage sparse, imbalanced data and noisy spectra, mak-
ing them invaluable for on-the-fly decision-making in space re-
source extraction. Moreover, ML approaches are not limited to
mineral classification; recent studies have successfully applied
neural networks to predict plasma parameters directly from LIBS
spectra, such as plasma temperature estimation using synthetic
17 and rapid detection of trace el-
ements like xenon in complex plasma mixtures relevant for geo-
chemical and planetary analysesi8.

ChemCam-based simulations

This study presents a robust LIBS-ML integration methodol-
ogy that bridges Earth-based experiments with extraterrestrial
resource exploration, addressing challenges like matrix effects,
spectral noise, and small dataset variability. A key distinguishing
feature of this work is its focus on mineral identification using
LIBS spectra collected under planetary-like low-pressure condi-
tions, as well as a careful evaluation of performance on complex
mineral mixtures, which closely reflects the real-world scenarios
of future space resource utilisation.

The paper is organized as follows. Sect. Material and Method,
details the experimental methods and describes data processing
and ML; Sect. Result and Discussion presents results and discus-
sion; The next section discusses strategies to handle novel data
and improve autonomous decision making in remote applica-
tions, and the last section concludes with key findings and future
outlook.
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Table 1 Ores and rock-forming minerals were analyzed in this study for LIBS-based classification, focusing on Martian resource utilization.

Material Name Metal/Material Mined Chemical Formula Mineral Classification Geological Occurrence Spectroscopic Signatures Ref
Ores
Azurite Copper Cu;3(CO3),(0H), Carbonate Oxidized zones of copper deposits Distinct Cu peaks at 324.8 nm and 327.4 nm. -
Bauxite Aluminum Al(OH)4 Hydroxide Lateritic soils in tropical regions Broad Al peaks around 394.4 nm and 396.1 nm. -
Bismuth Bismuth Bi Native Element Hydrothermal veins Bi spectral line at 306.7 nm.
Cassiterite Tin SnO, Oxide Igneous and metamorphic rocks Sn lines at 189.9 nm and 317.5 nm. -
Chalcopyrite Copper CuFeS, Sulfide Hydrothermal veins, igneous rocks Cu peaks at 324.8 nm and 327.4 nm.
Chalcocite Copper Cu,S Sulfide Supergene enrichment zones Cu peak at 324.8 nm. -
Chromite Chromium FeCr,0, Oxide Ultramafic rocks Cr peaks around 425.4 nm.
Kyanite Aluminum Al,SiOg Silicate Metamorphic rocks Al peak at 396.1 nm. -
Galena Lead Pbs Sulfide Hydrothermal veins Pb peak at 220.3 nm. -
Goethite Iron FeO(OH) Hydroxide Secondary mineral in iron deposits Fe peaks at 259.9 nm and 271.9 nm. 21
Grossular Aluminum CazAl,(Si04)4 Silicate Metamorphic rocks Al peaks at 394.4 nm and 396.1 nm. -
Hematite Iron Fe,04 Oxide Sedimentary and metamorphic rocks Fe peaks at 259.9 nm and 372.0 nm. 21
Magnetite Iron Fe;0, Oxide Igneous and metamorphic rocks Fe peak at 516.7 nm.
Malachite Copper Cu,CO4(OH), Carbonate Oxidized zones of copper deposits Cu peaks at 324.8 nm and 327.4 nm. 231
Molybdenite Molybdenum MoS, Sulfide Hydrothermal veins Mo peaks at 390.3 nm and 386.4 nm. -
Pyrite Sulfur FeS, Sulfide Sedimentary and hydrothermal deposits Fe peaks at 259.9 nm and 371.9 nm. 24
Sphalerite Zinc ZnS Sulfide Hydrothermal veins Zn peak at 213.8 nm. -
Stibnite Antimony Sb, S, Sulfide Hydrothermal veins Strong Sb lines in the UV range. -
Wolframite Tungsten (Fe,Mn)WO, Tungstate Hydrothermal veins W peaks at 207.9 nm and 255.2 nm. -
Zircon Zirconium ZrSio, Silicate Igneous and metamorphic rocks Zr peaks at 343.8 nm and 349.6 nm. 251
Rock-Forming Minerals
Olivine Magnesium, Iron (Mg,Fe),Si0O, Silicate Ultramafic rocks (Peridotites, Basalts) Fe peaks at 516.7 nm, Mg lines in UV. 12e]
Gypsum Calcium CaS0O,-2H,0 Sulfate Sedimentary deposits, evaporites Ca peaks at 393.3 nm, 396.8 nm. )
Feldspar Aluminum, K, Na (K,Na,Ca)AlSi; Og Silicate Igneous/metamorphic rocks Al peaks at 394.4 nm, 396.1 nm. 21
Serpentine Magnesium (Mg,Fe);8Si,05(0H),  Silicate Metamorphic rocks (alteration of peridotite) Mg peaks in UV, Fe peaks at 259.9 nm. 21
Dolomite Magnesium, Calcium CaMg(CO,), Carbonate Sedimentary rocks, hydrothermal veins Ca peaks at 393.3 nm, Mg peaks in UV.
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2 Material and Method

2.1 Experimental
2.1.1 Materials

Certified reference mineral samples used in this study were pur-
chased from a well-established Czech mineral supplier??. Ta-
ble [I]lists the ores and rock-forming minerals, featuring econom-
ically important materials such as hematite, Magnetite, Bauxite,
and Cassiterite, which are key resources for industrial and space
mining. Additionally, rock-forming minerals, including Olivine,
Feldspar, Gypsum, Serpentinite, and Dolomite, were included due
to their known occurrence in Martian geology?l, emphasizing
their relevance to Martian in-situ resource utilization (ISRU). We
carefully selected samples to cover a wide variety of minerals, like
silicates, oxides, sulfides, carbonates, and native elements, mir-
roring the kind of mineral diversity you'd typically find on plane-
tary surfaces.

4 Fig. [1) shows the surface of the Bauxite sample as an exam-
4 ple. The experiment was performed on this surface to enhance
4 laser absorption, improve plasma formation, and reduce reflec-
4 tivity and matrix effects®?. The dark lines visible in the marked
4 area indicate the effect of laser ablation, where material removal
4 and surface modification have occurred due to the interaction of
47 the laser with the sample. To capture a representative analysis,
48 multiple laser spots were applied across a broader area, capturing
49 different microstructures within the sample matrix.

g? 2.1.2 Data Acquisition and Initial Conditions

52 The samples were ablated using the Nd:YAG laser (Nd-doped
53 yttrium-aluminum garnet laser), which provides a pulse with a
54 wavelength of 1064 nm, a duration of 6 ns, and an energy of 450
55 mJ. The repetition rate was set to 10 Hz. A CaF, lens with a focal
56 length of 10 cm was used to focus the laser beam on the samples
57 attached to a moving stage located inside a vacuum chamber. The
gg measurements were carried out under two different pressure con-
60

B Histogram
Normal Fit (4=1.64, 0=0.17)

Density

0

16
Noise Level

Fig. 2 The histogram shows the noise level distribution across spectra,
while the grey dashed line represents the fitted normal distribution.

ditions: 10 mbar and 10~2 mbar.

Emission spectra of the laser ablation-induced plasma were
recorded using the high-resolution Butterfly Echelle spectro-
graph, equipped with an Andor ICCD camera. The spectrograph
operates in the UV (192-433 nm) region, offering spectral res-
olutions of 13-31 pm (with a resolving power of 14,000). The
Echelle spectrograph was set to trigger 50 ns after the laser pulse
and collect the signal for 1 us. The final spectra were obtained by
accumulating 20 laser shots. Before data collection, the Butterfly
spectrograph was calibrated using a Hg lamp.

2.2 Computational Method
2.2.1 Data Processing of LIBS Spectra

Twenty-five different ore and mineral families were examined to
design our data set, maximizing the mineral diversity essential
for utilizing space resources by including many mineral families,
each characterized by a smaller number of carefully selected high-
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quality spectra. This approach aligns with previous studies that
emphasize broad coverage of composition through representation

of diverse classes=1.

As the first step, careful filtering criteria were applied to im-
prove LIBS data quality. These criteria focused on analyzing the
standard deviation and noise distribution to exclude spectra with
excessive noise or poorly defined peaks, which ensured that only
high-quality spectra were included in the dataset. Of the 437
spectra across 25 ore and mineral families, 417 spectra fulfilled
these criteria, resulting in a retention rate of 95.5%, which con-
firms that most of the data were preserved for analysis. The fil-
tering efficiency of 4.5% represents the proportion of spectra re-
moved due to low quality, demonstrating the effectiveness of the
filtering process. Additional details on the preprocessing steps, in-
cluding examples of excluded spectra with high noise or anoma-
lously intense peaks, are provided in the Supplementary Materi-
als.

Then, we analyzed the noise distribution across all spectra by
calculating the standard deviation of the first 50 intensity points
for each spectrum. As shown in Fig. [2} the normalized histogram
of noise levels follows a Gaussian distribution, with most spec-
tra exhibiting noise levels ranging between 1.1 and 2.3. The
noise levels were normalized to a density, ensuring comparability
across datasets and enabling a fitted normal distribution overlay.
The mean noise level was calculated to be yu = 1.64, with a stan-
dard deviation of ¢ = 0.17, indicating that the noise distribution
is tightly clustered around the mean. Spectra with noise levels
below 1.06 or above 2.32 were rare, demonstrating the uniform
quality of the dataset. A threshold of 1.49, derived as the 20th
percentile of the noise levels, was used to identify spectra with
low noise for subsequent analysis, ensuring robust preprocessing
and consistent data quality.

As the next step after noise analysis, we implemented wavelet
denoising to improve spectral data quality by reducing noise
while maintaining important signal features=2. This process in-
volves three key steps. First, the signal x(r) is decomposed into
wavelet coefficients ¢; j, and wavelet basis functions y; ;() using
the Daubechies-4 (db4) wavelet:

N
x(t) = Z

1

cijWij(t) @D
=1

I
—
~

Il

Next, a soft thresholding function is applied to the wavelet coeffi-
cients to suppress noise while maintaining the significant compo-

nents of the signal. The soft thresholding function used, defined
as33k

sign(c; i )(|ci.i|—A), iflcii|>A
: { an(ei)(cij —2). i fe | -

&=
o, if feij| <A

Here, A represents the threshold value, derived from the noise
analysis results. Finally, the denoised signal £(¢) is reconstructed
by applying the inverse wavelet transform to the thresholded co-
efficients:

N
() = Z 2. Cijvi(t) 3

1

Il
=
~.

Il

This denoising approach was implemented using the PyWavelets
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Fig. 3 The heatmap illustrates how our dataset was split for model
evaluation across 10 different random iterations. Each row represents a
different split, and each column is a sample from the dataset. The blue
cells mark which samples were selected as part of the test set for that
particular iteration. By repeating this process 10 times, we ensured that
every sample had a chance to be tested, providing a fair and thorough
assessment of our models while minimising sampling bias.

library=%, with soft thresholding explicitly applied through the
pywt.threshold function. The Daubechies-4 wavelet was se-
lected for its optimal balance between resolution and smoothness,
making it well-suited for LIBS spectral data®2. This process en-
hanced spectral quality by approximately 1.5 times, underscoring
its effectiveness in improving data reliability and enabling more
accurate downstream analyses (see the example in Supplemen-
tary Materials).

For baseline correction, the process uses wavelet decomposition
to separate the spectrum y(4) into a low-frequency baseline A (1)
and high-frequency details D;(1), isolating the baseline by setting
D;(A) = 0. The baseline is adjusted to ensure A;(1) < y(4), pre-
venting overcorrection. The corrected spectrum is then calculated
as Yeorrected (A) =¥(A) —Aj(4). This approach effectively removes
the baseline while preserving the spectral peaks, ensuring no neg-
ative values or artificial elevation in the corrected spectrum.

Then, each spectrum x; was normilized using:

xy=H @
j
where x; ; is the intensity at wavelength j for sample i, u; =
L XN x;; is the mean, and o; is the standard deviation for fea-
ture j across all samples.

It is worth noting that across all tested minerals, the spectra
collected at different pressures showed strong correlations, with
only minor intensity variations and no significant peak shifts or
formation of new lines. Therefore, standard normalization and
preprocessing are sufficient to combine or compare data at both
pressures for mineral classification.
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Fig. 4 (A) Number of principal components (x-axis) vs. contribution rate (left y-axis, green bars) and accumulated contribution rate (right y-axis, red
curve) for the full LIBS dataset. The dashed grey line marks the largest individual contribution rate, where the first principal component alone explains
about 8.5% of the total variance. This figure illustrates that most variance is captured by the first few components, supporting the dimensionality
reduction in our analysis. (B) Projection of sample spectra from five selected mineral classes onto the first two principal components (PC1 and PC2).
Ellipses indicate 95% confidence intervals for each class, illustrating how PCA captures class-specific variance and enables partial separation of mineral

families in the reduced-dimensional space.

2.2.2 Machine Learning Approach

Afterwards, the dataset was randomly divided into training and
test sets using a stratified sampling approach®2. This process en-
sures that each class is represented in the training and test sets in
the same proportions as in the original data. In other words, for
a dataset 7 = {(x;,y;)}Y., with K classes, stratified sampling aims
to maintain the same probability distribution p(y = k) in both the
training and test groups.

For hyperparameter optimization and model selection, we fur-
ther applied k-fold cross-validation within each training set. In
this procedure, the training data is partitioned into k equally sized
folds; each fold serves as a temporary validation set while the
remaining k — 1 folds are used for training. This process is re-
peated k times, allowing every sample to be used for validation
exactly once. The model’s performance is then averaged across all
k folds, yielding a robust and unbiased estimate of generalization
accuracy. In this study, we used k = 5.

Fig. [3| shows the results of repeated random stratified splits:
each row is an iteration, each column a sample, and blue cells
mark test set assignments. This demonstrates that every sample
is included in the test set throughout the cross-validation process.

To address the issue of class imbalance in our dataset,
we applied the Synthetic Minority Oversampling Technique
(SMOTE)2€, which generates synthetic minority class samples by
interpolating between existing minority instances:

&)

Xpew = X;+ & X (Xnn*Xi),

where x; is a minority class sample, xp, is one of its nearest neigh-
bors, and § € [0,1] is a random scalar. SMOTE was applied to
the training set before feature selection and classifier training, so

that all models benefit from a balanced class distribution during
fitting.

To improve robustness, we performed repeated random splits
and implemented k-fold cross-validation, which provides a
more reliable estimate of model performance. In k-fold cross-
validation, the data is partitioned into k equal-sized subsets
(D1,...,%). For each fold j, the model is trained on &\ Z; and
tested on Z;, cycling through all k folds. The average perfor-
mance is calculated as:

|k
CVscore = i Zl score; (6)
=

where k is the number of folds, and score; is the evaluation met-
ric on the j-th fold®Z. Before training the classifiers, we explored
three different feature selection and dimensionality reduction ap-
proaches, which are described in the next section.

Feature Selection and Dimensionality Reduction Methods

Principal component analysis

Principal Component Analysis (PCA) is a widely used unsuper-
vised dimensionality reduction technique in LIBS data analysis.
By projecting the original data onto a new set of orthogonal axes
(principal components), PCA captures the directions of maximum
variance. Mathematically, PCA solves the eigenvalue problem for
the covariance matrix of the data:
C= %XTX %)

where X is the mean-centered data matrix, and C is the covari-
ance matrix. The principal components are defined by the eigen-
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Fig. 5 Random Forest Feature Selection results: (A) selected wavelengths versus NIST emission lines, (B) averaged spectrum with selected features,
and (C-E) zoomed spectral regions for Bauxite, Gypsum, and Magnetite, highlighting key model-selected emission lines.

vectors w; of C, and the projection onto each component is:
7% = Xwy ®

Fig. shows the distribution of explained variance across the
principal components extracted from LIBS data used here. The
bars on the left axis indicate the individual contribution rate,
that is, the fraction of total variance explained by each principal
component, corresponding to the eigenvalues introduced above.
The red curve displays the accumulated contribution rate as more
components are included. As observed, the cumulative explained
variance rises steeply, with the curve approaching 1.0 (100%) af-
ter relatively few components. This demonstrates that most of the
spectral information in the LIBS data can be efficiently captured
with a limited number of principal components. Rather than re-
taining all components, we focus on those that collectively ac-
count for at least 95% of the total variance, as this threshold effec-
tively preserves the essential structure and chemical information
present in LIBS spectra®l. To highlight the class differentiation
achieved by these principal components, Fig. projects LIBS
spectra from five representative mineral classes onto the first two
components (PC1 and PC2). The 95% confidence ellipses high-
light distinct clustering, indicating that the variance captured in
Fig. 4A translates into meaningful spectral separation. While the

6 | Journal Name, [year], [vol.], 1

ellipses represent the main class clusters, the presence of points
outside these boundaries is consistent with expected measure-
ment variability and spectral complexity. Together, these panels
confirm that PCA not only efficiently reduces dimensionality but
also preserves class-specific information critical for accurate clas-
sification.

Variance Threshold

Variance Threshold (VT) is an unsupervised feature selection
technique that removes features exhibiting low variance across
all samples, assuming that features with very little variation are

unlikely to be informative. Given a data matrix X, each feature j
is retained if its variance satisfies

(x,'j—fj)z >0 9

M=

1
Var(X;) = o
1

1

Where 6 is a predefined threshold, this approach efficiently re-
duces dimensionality by discarding nearly-constant features with-
out reference to any class labels.

Random Forest Feature Selection

Random Forest feature selection (RF-FS) is a supervised approach
that leverages the strengths of random forests to identify which
features in the data are most effective in distinguishing between
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classes. As the model learns, it scores each feature by measuring
how much it helps reduce uncertainty (or impurity) in the classi-
fication process, averaged over all the trees in the forest:

I(J'):fz Y

=S Ai(s) (10)

where /; is the importance of feature j, T is the number of trees,
and Almpurity;, is the decrease in impurity caused by feature j
in tree ¢. In the end, we keep the features with the highest scores,
focusing the next steps of our analysis on the parts of the data
that matter most for predicting the sample’s class.

A significant advantage of our RF-FS approach is the inter-
pretability it offers, as it identifies the most important spectral
features used for classification. Fig.|5|provides a detailed valida-
tion of the RF-FS method used to identify the most informative
wavelengths in LIBS spectral data. Fig. illustrates the excel-
lent match between the wavelengths selected by RF-FS and the
known atomic emission lines from the NIST database8, demon-
strating that the model prioritises physically meaningful spectral
features.

Fig.[5B shows the selected wavelengths overlaid on the average
LIBS spectrum from all samples and mineral families. This illus-
trates how the RF-FS method effectively focuses on the prominent
spectral peaks, which help distinguish between different miner-
als. Fig. presents a zoomed spectrum of the averaged Baux-
ite sample; as indicated in Tab. [1} Bauxite is rich in Al, and the
wavelength selected by the model at 394.40 nm corresponds to
one of the most prominent Al emission lines. Meanwhile, the
second line at 396.15 nm is also visible; both lines are key spec-
tral markers widely used for aluminum detection in spectroscopic
analysis©?. Moreover, panel D zooms in on Gypsum, highlight-
ing the important 396.83 nm Ca emission line identified by the
model, which has been shown to reliably correlate with calcium
concentration variations under different experimental conditions
in remote LIBS analysis#?. Panel E showcases Magnetite with the
key Fe line at 358.11 nm*8. Moreover, as our spectral window is
limited to the UV region, some of the most intense sodium (Na)
and potassium (K) emission lines, such as the prominent Na dou-
blet at 589 nm, fall outside the measured range. Nevertheless,
the RE-FS method consistently selected alternative Na emission
features present within the UV window, as detailed in the Supple-
mentary Materials. The RF-FS method, applied across all tested
classifiers, identifies the most important spectral features aligned
with known elemental lines, thereby improving classification ac-
curacy while making the models more interpretable.

2.2.3 Classification Models

The features obtained from the previous dimensionality reduction
and selection steps were then used as input for four supervised
classification models, as described below. These models were se-
lected for their complementary strengths in handling multiclass,
high-dimensional LIBS data and for their well-established use in
spectroscopy-based classification tasks4L,
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Random Forest

An ensemble of decision trees, where the final prediction is based
on majority voting:

y=mode ({7} (x),T»(x),...,Tn(x)}) an

where T;(x) is the prediction of the i-th tree42, The main hyper-
parameters tuned for RF are the number of trees in the ensem-
ble (nestimators) and the proportion of features considered at each
split (MaX¢earures), both of which control the model’s complexity
and diversity.

Support Vector Machine

Finds the hyperplane maximizing class separation. The decision
function is:

n

f(x) =sign (z ik (x:,) +b> (12)

i=1
where K(x;,x) is the kernel function, and ¢; and b are model pa-
rameters+3. The main hyperparameters for SVM are the choice
of kernel (linear, polynomial, RBF, or sigmoid) and the regular-
ization parameter (C), which controls the trade-off between max-
imizing margin and minimizing classification error.

K-Nearest Neighbors

Classifies a sample based on the majority class of its k nearest
neighbors:
§=mode ({y(1,y?,....y¥}) (13)

where y() is the class of the i-th nearest neighbor®. The main
hyperparameter is the number of neighbors (k) used for voting.
In this study, we also varied the number of principal components
retained after PCA as an additional parameter during grid search.

Logistic Regression
Models class probabilities using the sigmoid function:

1

EvEC) a9

P(y=1]|x)
where w and b are the weights and bias, respectively2. LR
was tuned for regularization penalty type (L; or L) and regu-
larization strength (C), both of which help prevent overfitting by
shrinking model coefficients.

These methods were chosen for their effectiveness and diver-
sity in handling classification tasks. A detailed analysis and com-
parison of classifier performance are presented in the following
section.

Classifier Performance Evaluation

For all classifiers, sample labels were assigned according to the
class with the highest predicted probability (argmax rule), so each
sample was always classified. No fixed probability cutoff was used
to abstain or flag uncertain predictions. However, classifier confi-
dence (predicted probability or entropy) was calculated for each
prediction, and ROC curves were generated by varying the de-
cision threshold over the full probability range. We measured
classifier performance using the following standard metrics:
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Fig. 6 (A) shows principal component importances before SMOTE; (B) shows importances after SMOTE. (C) displays violin plots of the first principal
component values for each sample before and after SMOTE; each dot represents a sample’s score on PC1, and the width of the violin at any value
reflects the density of samples (wider regions = more samples). This highlights reduced skewness and fewer extreme values after balancing. (D)
summarizes classifier metrics, demonstrating improved accuracy, F1, balanced accuracy, and MCC with SMOTE.

Accuracy (Acc)

The proportion of correctly classified samples:

1 N
Ace = 5 Y 19 =yi) (15)
i=1

where N is the total number of samples, y; the true label, §; the

predicted label, and T is the indicator function.

F1 Score (F1)

The harmonic mean of precision and recall (reported as a
weighted average for multiclass):

Precision - Recall

Fl=2-—mm——— 16
Precision + Recall (16)
See Supplementary Materials for details.
Balanced Accuracy (BAcc)
The average recall across all classes:
1 & TP
BAcc = — e — 1
c« Kk;]TPH—FNk a7

8 | Journal Name, [year], [vol.], 1

where K is the number of classes, and TP;, FN, are true positives
and false negatives for class k.

Matthews Correlation Coefficient (MCC)
TP-TN —FP-FN
/(TP +FP)(TP +FN)(TN +FP) (TN + FN)

MCC = (18)
where TP, TN, FP, FN are total true/false positives/negatives.
For multiclass problems, MCC is generalised as described in46l

Cross-Validation Variance (O'év)

The variance of validation accuracy across k folds:

k
0y =1 Y (aj— ) (19)

where a; is accuracy in fold j, and a is the mean accuracy across
folds.

These metrics were computed for each classifier and feature se-
lection combination to provide a robust and multi-faceted evalua-
tion of model performance. The results of these analyses, includ-
ing detailed grid search optimization, classifier comparisons, and
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performance summaries, are presented in the following section.

3 Result and Discussion

After applying the preprocessing steps to the raw data described
in Sec .[2.27] the spectral data were ready for ML. Each spec-
trum was modeled as a high-dimensional feature vector made
up of intensity values measured over a consistent range of wave-
lengths. These intensity values reflect the presence and relative
abundance of specific elements in the sample, as revealed by the
characteristic emission lines in the LIBS spectra. The consistent
wavelength grid ensured that the intensity values across all spec-
tra were dimensionally aligned, enabling direct comparison and
analysis. The high-resolution Butterfly Echelle spectrograph used
in this study produces over 47,000 variables per spectrum, cor-
responding to data points across the wavelength range of 187.19
to 425.85 nm. The dataset consists of 417 spectra across 25 dif-
ferent classes, forming a large data matrix of 417 rows (one for
each spectrum) and 47,693 columns (each representing intensity
at a specific wavelength). Handling such high-dimensional data
can be computationally challenging. That’s why efficient dimen-
sionality reduction, along with careful preprocessing and noise
reduction, is crucial for removing redundant information and en-
hancing the effectiveness of the analysis. In this matrix, each row
captures the intensity profile of a single spectrum, while each col-
umn corresponds to the intensity at a particular wavelength. This
organized format was then used as input for ML classifiers, which
learned to recognize patterns and differences between the classes.
By using intensity values as features, the models could directly
extract meaningful insights from the LIBS spectral data, leading
to reliable and accurate classification. As mentioned earlier, to
address class imbalance, we employed the SMOTE technique.
Fig. [6] shows how SMOTE affects the RF model when using
PCA for feature selection. Fig. [6A and B show the importance
of principal components before and after applying SMOTE, high-
lighting how balancing the dataset shifts the relevance of different
components. This indicates that SMOTE changes the underlying
data structure, influencing which features are most informative
for classification. Fig. [(C compares the distribution of the first
principal component before and after applying SMOTE. Each dot
in the violin plot represents the PC1 value for a single sample;
the width of the violin at any point reflects how many samples
have similar PC1 values (i.e., wider areas indicate higher sample
density). In this context, skewness refers to the asymmetry of
the distribution, with longer tails indicating more samples with
extreme values. Before SMOTE, the distribution is wider with no-
ticeable extreme values, or long tails, on both sides, indicating
that the data is more spread out and skewed. This skewness re-
flects the imbalance and variability in the original dataset. After
SMOTE, the distribution becomes narrower and more symmetric,
with fewer extreme values and reduced skewness. This change
suggests that SMOTE has effectively balanced the dataset by mit-
igating extreme variability and bias toward outlying values, lead-
ing to a more representative and stable feature distribution. Al-
though the Kolmogorov—Smirnov test4Z showed a non-significant
statistical difference (p = 0.150), the observational evidence sup-
ports the positive impact of SMOTE on data balance. Finally,
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Fig. 7 Grid search hyperparameter optimization results for four classifiers
applied to LIBS-based mineral identification: (A) RF (n_estimators,
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components), and (D) LR (regularization strength C and penalty type).
Values indicate mean test accuracy across parameter grids.
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Table 2 Classification Performance Metrics for Multiple Models and Feature Selection Methods.
Model Feature Selection Method Parameter Accuracy Precision Recall F1
PCA Testing 0.842+£0.041  0.891+0.039 0.831£0.051 0.834+0.044
Training 1.00 1.00 1.00 1.00
RF RF-FS Testing 0.886+0.048  0.912+£0.039 0.867+£0.59 0.879£0.050
Training 1.00 1.00 1.00 1.00
VT Testing 0.886+0.031 0.89+0.031 0.86£0.041 0.878 £0.032
Training 1.00 1.00 1.00 1.00
PCA Testing 0.854+£0.032 0.872+£0.025  0.837£0.0573  0.849+0.036
Training 1.00 1.00 1.00 1.00
SVM RF-FS Testing 0.893+0.039  0.871+0.023 0.861£0.048  0.883+0.046
Training 1.00 1.00 1.00 1.00
VT Testing 0.833+0.019 0.814+0.032  0.804+0.0405 0.8194+0.022
Training 1.00 1.00 1.00 1.00
PCA Testing 0.724£0.053  0.762+0.044 0.731£0.040 0.707£0.059
Training 1.00 1.00 1.00 1.00
KNN RF-FS TesFiI}g 0.862+£0.033 0.854+£0.0424 0.8323+£0.0479 0.851£0.035
Training 1.00 1.00 1.00 1.00
VT Testing 0.614 +0.060 0.72+0.034 0.67£0.052 0.607 +£0.061
Training 1.00 1.00 1.00 1.00
PCA Testing 0.850£0.030 0.878+0.016 0.846£0.048  0.841+0.032
Training 1.00 1.00 1.00 1.00
IR RE-FS Testing 0.891£0.046  0.91+0.033 0.874£0.060  0.884+0.051
Training 1.00 1.00 1.00 1.00
VT Testing 0.857+£0.025  0.841+0.015 0.83+0.036 0.847 +£0.028
Training 1.00 1.00 1.00 1.00

Note: PCA: Principal Component Analysis; RE-FS: RF Feature Selection; VT: Variance Threshold.

D presents a comparison of performance metrics, demonstrating
clear improvements after applying SMOTE. The next step was to
fine-tune the hyperparameters of each classifier to achieve the
best possible predictive performance. This was done using a com-
prehensive grid search, a well-established method that system-
atically tests different model settings. The results are shown in
Fig. |7l which displays grid search heatmaps for all four classifiers
paired with PCA-based feature selection. Similar grid searches
were performed for RF-based and VT feature selection; however,
only the PCA results are presented here for clarity.

Fig. shows how RF accuracy varies depending on the
number of trees used in the ensemble (n_estimators) and
the fraction of features considered at each decision point
(max_features). The model performs best, often with test accu-
racy above 0.95, when both the number of trees and the feature
proportion are set high, suggesting that a larger, more diverse
ensemble leads to stronger and more reliable classification. This
finding is in agreement with Sheng et al., who reported near-
perfect classification accuracy for iron ore samples by optimiz-
ing these parameters in their RF models#€. Moreover, this im-
provement can be explained by the theoretical generalization er-

ror bound of RF introduced by Breiman42:

(20

1_2
PE<p-—
S

where PE is the prediction error, s is the strength of individual
trees, and p is the average correlation between trees. Increas-

10 | Journal Name, [year], [vol.], 1

iNg negrimators Stabilizes the ensemble by averaging many trees,
while increasing maxXge,ryres reduces correlation p by introducing
randomness. Together, these reduce the overall error, improving
classification accuracy.

Fig.|7B shows the classification accuracy of SVM models across
different kernels and regularisation parameters (C). The linear
kernel consistently achieves the highest accuracy around 0.96,
across all tested C values, indicating that the LIBS spectral data
are largely linearly separable in the original feature space. This is
expected since LIBS spectra often contain prominent, distinctive
peaks corresponding to elemental signatures, which can be effec-
tively separated using linear decision boundaries. The RBF kernel
yields moderately high accuracy (up to 0.91) but exhibits more
variability, depending on parameter settings, suggesting a limited
non-linear structure. The sigmoid kernel exhibits intermediate
performance, while the polynomial kernel performs the worst,
especially at lower C values, likely due to overfitting or a mis-
match in model complexity with the data characteristics. Addi-
tional hyperparameter tuning results across different kernels and
parameter grids are available in the Supplementary Materials.

Fig. highlights the dependence of KNN classification accu-
racy on the number of neighbors (k) and the number of princi-
pal components retained after PCA. The best accuracy (= 0.94)
is achieved with three neighbors and 100 principal components,
suggesting that an optimal balance between dimensionality re-
duction and neighborhood size improves performance. The KNN
classifier predicts the class of a sample based on majority vot-
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Fig. 8 Balanced accuracy distributions for each model and feature selection method.

ing among its k nearest neighbors in the PCA-transformed feature
space:

$ = argmax Z 1(yi =c¢), 21n

ceC ie M(x)

Where x is the PCA-transformed feature vector of the sample to be
classified, § is the predicted class label, ¥ is the set of all possible
classes, and .4;(x) represents the set of indices of the k nearest
neighbors of x in the PCA-transformed space. The indicator func-
tion 1(y; = ¢) equals 1 if the i-th neighbor’s class label y; matches
class c, and 0 otherwise.

Finally, Fig. reports LR accuracy as a function of penalty
type (L; or L) and regularization strength (C). Both penalty
types achieve high accuracies, exceeding 0.96 for moderate
values of C (0.1 to 1.0), demonstrating the effectiveness of
these regularization strategies in mitigating overfitting in high-
dimensional spectral data. Following hyperparameter tuning, the
models were evaluated using various feature selection methods
to assess their classification performance systematically.

Tab. [2| summarizes classification performance metrics for all
four models and three feature selection methods, totaling twelve
combinations. For each, results are reported separately for the
test and training sets, along with the mean and standard devia-
tion across the cross-validation folds. Among all methods, RF and
LR combined with RF-based feature selection yielded the high-
est test accuracy, precision, recall, and F1 scores, all of which
approached or exceeded 0.88. These results indicate that these
models effectively classify mineral spectra, balancing false posi-
tives and false negatives well, and demonstrate robust general-
ization, as seen in the perfect training accuracy (reflecting model
capacity) and slightly lower but reliable test performance. This
pattern of near-perfect training accuracy coupled with slightly
lower test accuracy, which reflects strong model capacity and re-
liable generalization, has also been observed in a spectroscopic
classification study*42.

SVM also performed well, especially with RF-FS (test accuracy
0.893 4 0.039), although it was slightly lower than RF. SVM with
PCA also maintained strong, balanced metrics, demonstrating the
utility of PCA for dimensionality reduction. KNN showed lower
test accuracy and F1 scores when using PCA or VT (reaching
0.724 +0.053 and 0.614 + 0.060, respectively). Still, performance
improved substantially with RFE-FS (accuracy 0.862 +0.033), sug-
gesting KNN benefits significantly from supervised feature selec-
tion in this context. VT as a feature selector generally gave lower
scores across all models compared to PCA or RF-FS. This illus-
trates the importance of utilising methods that either leverage
label information, such as RF-FS, or preserve the overall variance
structure, like PCA, for this type of data. Also, precision, recall,
and F1 generally follow the same pattern as accuracy: when a
model has higher accuracy, it usually means it’s also good at min-
imizing both false positives and false negatives. This leads to high
F1 scores and shows the models aren’t favoring any one class over
others.

The results in Tab. |2 are supported by Fig. [8, which compares
balanced accuracy across models and feature selection methods.
Balanced accuracy is significant for this multi-class, imbalanced
LIBS dataset, as it reflects the average recall across all mineral
classes and prevents performance from being dominated by the
largest class. As shown in Fig. [8) RF and LR combined with RF-
based feature selection consistently achieve the highest and most
stable balanced accuracy, with median values at or above 0.90
and very low variability, aligning with their strong performance
in accuracy, precision, recall, and F1 scores reported in Tab.
SVM, especially when combined with RF-FS or PCA, also performs
well, although it typically yields results below those of RF and LR.
By contrast, KNN shows lower and more variable balanced accu-
racy with unsupervised selection (VT), but improves substantially
when paired with RF-FS, highlighting the importance of label-
informed feature selection. Models using VT alone tend to un-
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derperform, indicating that relying solely on global variance is
insufficient for identifying informative spectral features. These
findings underscore the value of supervised feature selection, es-
pecially RF-FS, for maximizing the generalizability and robust-
ness of classification models in challenging, imbalanced mineral
datasets.

Fig.[9]displays the normalized confusion matrices for each clas-
sifier using RF-based feature selection, providing a granular view
of class-level prediction performance. In these matrices, each row
corresponds to the true mineral class, and each column to the pre-
dicted class. The values along the main diagonal (from top left to
bottom right) represent the proportion of samples that were cor-
rectly classified for each mineral class; higher diagonal values in-
dicate stronger model performance for those classes. Off-diagonal
values, by contrast, indicate misclassifications where samples are
incorrectly assigned to another class. Ideally, a perfect classifier
would produce a matrix with all values on the diagonal and zeros
elsewhere, while off-diagonal entries signal which minerals are
most frequently confused. Fig.[J]A confirms that RF achieves the
most consistent and accurate mineral identification, with nearly
all samples assigned to their correct class, reflected in minimal
off-diagonal errors. Fig. [OB shows SVM, which retains a domi-
nant diagonal but exhibits more class confusion than RF, espe-
cially for spectrally similar minerals, revealing specific class pairs
that remain challenging to separate. Fig.[9|C, for KNN, highlights
more frequent misclassifications, particularly among classes with
overlapping features, illustrating KNN’s sensitivity to local vari-
ations and validating its comparatively lower balanced accuracy.
Fig. PD, LR, demonstrates performance close to RF, with most
predictions along the diagonal and only occasional confusion be-
tween certain classes. Together, these confusion matrices not only
validate the high overall accuracy of RF and LR with supervised
feature selection but also pinpoint specific mineral classes where
misclassification persists, providing actionable insight for refining
future models and experimental design.

Fig. shows the average Receiver Operating Characteristic
(ROC) curves for each classifier and feature selection method,
computed by averaging results over 10 random stratified splits. In
these plots, the True Positive Rate (sensitivity) is plotted against
the False Positive Rate (1-specificity) for varying classification
thresholds. The proximity of the curve to the upper-left corner
indicates stronger overall performance.

Each row of panels corresponds to a different classifier:
Fig. presents RF, Fig. SVM, Fig. KNN, and Fig.
LR. For RF, the ROC curves are consistently closest to the ideal
point, with high area under the curve (AUC) values across all
feature selection methods, reaffirming its robust discrimination
ability observed in previous metrics and confusion matrices. SVM
shows strong performance, particularly with RE-based feature se-
lection, though with slightly more variability than RF. KNN ex-
hibits noticeably flatter ROC curves, indicating weaker class sep-
aration and lower overall sensitivity, which aligns with its lower
test accuracy and increased off-diagonal confusion. LR performs
comparably to RF, especially when paired with supervised feature
selection, demonstrating a high AUC and reliable classification
boundaries.
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classification performance.

These results provide consistent evidence of classifier perfor-
mance across multiple evaluation criteria. Accuracy and F1 score,
previously defined, measure overall correctness and balance be-
tween precision and recall, respectively.

The confusion matrix visually complements these metrics, with
a strong diagonal indicating high true positive rates and minimal

misclassifications. To further generalize classifier evaluation, ROC
curves plot the true positive rate (TPR) against the false positive
rate (FPR) across thresholds, where:

FP

d FPR= —
an FP+ TN

TPR (22)

TP
" TP+EN
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Fig. 11 Comparison of an unseen Bismuth sample spectrum (green) with the mean predicted family spectrum (grey) classified by LR + RF-FS, shown

here as an example of model performance on new data.

The area under the ROC curve (AUC) summarizes performance
independent of threshold choice. As seen in Tab. [2] RF and LR
with RF-based feature selection achieve the highest test accuracy,
F1 score, and recall, as reflected in the confusion matrices, where
nearly all predictions are on the diagonal, and the ROC curves
approach an AUC of 1.0, indicating excellent discrimination. In
contrast, models with lower accuracy and F1 scores, such as KNN
with unsupervised feature selection, exhibit increased confusion
and flatter ROC curves, indicating higher misclassification rates.
Overall, the agreement across accuracy, F1, confusion matri-
ces, and ROC/AUC, grounded in their mathematical definitions,
robustly validates the superior performance of RF and LR for mul-
ticlass LIBS mineral classification. The goal of supervised pattern
recognition is to use samples with known classes as a training set
to build a model that can accurately predict the class of unknown
samples. To achieve this, we first trained and validated our clas-
sifiers to achieve high performance on known data. To further
evaluate their robustness and generalization, we then tested the
best-performing models on 12 completely unseen spectra, which
were randomly selected using a stratified sampling approach from
the entire set of measured spectra. These new samples were pro-
cessed with the same preprocessing steps as the training and test-
ing data to maintain consistency. The models correctly classified
10 to 11 out of 12 samples, achieving an accuracy of approxi-
mately 83% to 92%, demonstrating strong predictive capability
beyond the original dataset. Fig. shows a comparison be-
tween the spectrum of an unseen Bismuth sample and the mean
spectrum of the predicted Bismuth family, as classified by the LR
model with RF-based feature selection. The close alignment of
key spectral peaks between the individual sample and the family
mean spectrum highlights the model’s ability to generalize and
classify new, unseen spectra accurately. This visual confirmation
supports the quantitative classification results, demonstrating the
robustness of this approach for real-world mineral identification.
This strong performance on previously unseen pure mineral sam-

14 | Journal Name, [year], [vol.], 1

ples demonstrates the practical potential of our approach for au-
tonomous mineral identification. However, planetary materials
and terrestrial soils are rarely pure phases and are often complex
mixtures of several minerals. Therefore, to further test the robust-
ness and interpretability of our models under realistic conditions,
we systematically evaluated classifier performance on synthetic
binary mixtures, as described below.

3.1 Classification of Synthetic Mineral Mixtures

To address the robustness of our classifier on challenging, real-
world samples that are mixtures of minerals (as present in soils
and rocks), we generated synthetic mixture spectra by linearly
combining measured spectra of Hematite and Gypsum in varying
proportions. Specifically, for two minerals with normalized spec-
tra Sy (A) and S,(24), a mixture spectrum was computed as:

Smix(l) :w1S1 (l)'f‘WzSz(l) (23)

where wq and w, = 1 —wy denote the fractions of Hematite and
Gypsum, respectively. This procedure was repeated for w; from
0.1 to 0.9 in increments of 0.1.

Synthetic mixture spectra, together with pure Hematite and
Gypsum spectra measured at 10 mbar, are shown in Fig. Pro-
gressive changes in spectral features with varying composition
indicate compositional sensitivity and experimental relevance of
the mixtures. For the mixture classification analysis, we report
results using the LR-FS, identified as one of the best-performing
models in this study (see Tab.[2). Each synthetic mixture was clas-
sified with this model, and the probability assigned to Hematite,
P(Hematite), was recorded. To quantitatively analyze the classi-
fier’s response to these mixtures, the following metrics were eval-
uated.

First, the relationship between the predicted probability
PHematite @nd its fraction in the mixture fHemasice Was described us-
ing a sigmoid function:
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1

. 1 +eXP(_k' (fHematite — fO))
24

where fj is the inflection ("switch") point indicating the mixture
ratio at which the predicted class transitions, k controls the steep-
ness of this transition, and o allows for a nonzero baseline prob-
ability.

Then, to evaluate prediction confidence, the entropy H of the
predicted probability distribution across all mineral classes was
computed for each mixture:

Pematite (fHematite) =a+ (1 - OC)

H=-Y Plogh 25
l

Where P, is the assigned probability for class i. Higher entropy
values show greater uncertainty in the classification.

Finally, the ability to identify the dominant mineral in each mix-
ture was assessed by constructing an ROC curve, using the prob-
ability assigned to Hematite (Pgematite) aS the score and the domi-
nant mineral as ground truth. AUC provides a summary measure
of discriminative performance for mixed samples.

Fig. shows how our best classifier (LR + RF-FS) performs on
synthetic mixtures of Hematite and Gypsum, with clear evidence
of both accuracy and reliability in mixed-mineral samples. Panel
A, shows the relationship between the predicted probability for
Hematite and its actual fraction in the mixture. Each dot is a sin-
gle synthetic mixture (created by mixing Hematite and Gypsum
spectra in different amounts), and the red dashed line is a sigmoid
curve fitted to the data. The “switch point” of the curve is at about

0.75, meaning the model begins to call the mixture “Hematite”
when Hematite is roughly 75% of the sample. This curve confirms
that the model responds in a logical and gradual way to chang-
ing mineral composition, rather than making random or abrupt
jumps. Panel B, shows the same probability values, but now the
color of each point represents the prediction entropy, which mea-
sures the classifier’s confidence. When the mixture is nearly all
Hematite or all Gypsum (far left or right on the x-axis), the classi-
fier is very confident (entropy is low, brown/yellow points). The
highest uncertainty (blue points) is found near the middle, where
Hematite and Gypsum are in similar amounts, making the classi-
fication harder. Panel C displays the ROC curve, which evaluates
how well the classifier can identify the dominant mineral in each
mixture using the predicted probability for Hematite. The curve
is very close to the top left corner, and the AUC is 0.98, indicat-
ing overall high accuracy, particularly when one mineral domi-
nates. However, as seen in Fig. , the classifier’s predictions
are less reliable for intermediate mixtures where the proportions
of Hematite and Gypsum are similar. The model also provides in-
terpretable confidence estimates.This capability is especially im-
portant for real-world applications in soils, rocks, and planetary
materials, where mixtures are common and confident decisions
are required.

However, true deployment in planetary missions brings further
challenges,such as the need to recognize minerals not present
in the training library and to support autonomous, onboard
decision-making. These aspects are addressed in the following
section.
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3.2 Addressing Unknown Spectra and Onboard Decision-
Making

To identify minerals from LIBS data, machine learning models
typically require supervised training using extensive libraries of
known mineral spectra. However, when exploring other plan-
ets, scientists often encounter minerals that are not included in
these existing datasets. To address this, our method employs a
learning approach that enables the model to recognise unfamil-
iar spectra and suggest potential matches. At the same time, it
can update and grow the spectral library by adding new data as
it becomes available. This highlights the importance of contin-
ually expanding and diversifying spectral databases, particularly
for space mining. Another significant advantage arises from the
establishment of a feedback loop between the LIBS instrument
and the classification system. If the model is not confident in its
classification or cannot assign a spectrum, the system can auto-
matically trigger additional scans or measurements. This back-
and-forth process helps improve accuracy and allows faster, more
reliable decisions to be made directly on the spacecraft. Such
real-time feedback is especially crucial in space missions, where
communication delays with Earth prevent immediate human in-
put. Furthermore, robust and understandable mineral classifica-
tion is made possible by the interpretability offered by Random
Forest-Based Feature Selection (RF-FS), which identifies particu-
On-
board decision-making in extraterrestrial environments requires
autonomous systems to handle unseen mineral spectra, dynam-
ically adjust measurement strategies, and make accurate, real-
time resource assessments. Finally, although computing power
on spacecraft is more limited than on Earth, current models are
designed to be compact and efficient enough to run on small
or embedded computers onboard. Thanks to improvements in
lightweight computing hardware, it is possible to quickly iden-
tify minerals and assess resources right there on the spacecraft.
This capability is vital to enable autonomous decisions during fu-
ture robotic and crewed missions. However, there are challenges
ahead in handling large spectral libraries and updating models
during missions, which will be important areas of ongoing work.

lar elemental emission lines rather than abstract features.

16 | Journal Name, [year], [vol.], 1

4 Conclusion

This study evaluated multiple ML models combined with various
feature selection methods for LIBS mineral classification. The
RF and LR models combined with RF-FS achieved the highest
test accuracies of approximately 88.6% and 89.1%, respectively.
SVM with RF-FS also performed well, with a test accuracy around
89.3%. KNN demonstrated moderate performance, achieving up
to 86.2% accuracy when combined with RF-FS, but generally
yielded lower results with unsupervised feature selectors. Mod-
els using PCA and VT for feature selection yielded slightly lower
accuracies overall. Class imbalance was addressed using SMOTE,
and hyperparameter tuning was performed by grid search to opti-
mize model parameters and enhance classification performance.
The fundamental concept of supervised pattern recognition is to
use samples with known classes as a training set to build a model
that can predict the class of unknown samples. Building on this
principle, to further evaluate model generalization beyond the
cross-validation framework, the best-performing classifiers were
tested on 12 completely unseen spectra, randomly selected using
a stratified sampling approach from the full dataset. These new
spectra were subjected to the identical preprocessing pipeline to
ensure consistency. The models correctly classified 10 to 11 out
of the 12 samples, corresponding to an accuracy of approximately
83% to 92%. This shows robust predictive capacity and supports
the practical applicability of the LIBS-ML approach to mineral
identification in real-world scenarios, such as autonomous space
mining. The approach also offers reliable mixture classification,
interpretability through emission line matching, and confidence
estimation for autonomous adaptation to new spectra.
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