Issue 15, 2023

Hydrangenol, an active constituent of Hydrangea serrata (Thunb.) Ser., ameliorates colitis through suppression of macrophage-mediated inflammation in dextran sulfate sodium-treated mice

Abstract

Ulcerative colitis (UC) is a chronic disease of the colon characterized by mucosal damage and relapsing gastrointestinal inflammation. Hydrangea serrata (Thunb.) Ser. and its bioactive compound, hydrangenol, are reported to have anti-inflammatory effects, but few studies have investigated the effects of hydrangenol in colitis. In the present study, we evaluated for the first time the anti-colitic effects and molecular mechanisms of hydrangenol in a dextran sodium sulfate (DSS)-induced mouse colitis model. To investigate the anti-colitic effects of hydrangenol, DSS-induced colitis mice, HT-29 colonic epithelial cells treated with supernatant from LPS-inflamed THP-1 macrophages, and LPS-induced RAW264.7 macrophages were used. In addition, to clarify the molecular mechanisms of this study, quantitative real time-PCR, western blot analysis, TUNEL assay, and annexin V-FITC/PI double staining analysis were conducted. Oral administration of hydrangenol (15 or 30 mg kg−1) significantly alleviated DSS-induced colitis by preventing DAI scores, shortening colon length, and colonic structural damage. F4/80+ macrophage numbers in mesenteric lymph nodes and macrophage infiltration in colonic tissues were significantly suppressed following hydrangenol treatment in DSS-exposed mice. Hydrangenol significantly attenuated DSS-induced destruction of the colonic epithelial cell layer through regulation of pro-caspase-3, occludin, and claudin-1 protein expression. Moreover, hydrangenol ameliorated abnormal tight junction protein expression and apoptosis in HT-29 colonic epithelial cells treated with supernatant from LPS-inflamed THP-1 macrophages. Hydrangenol suppressed the expression of pro-inflammatory mediators, such as iNOS, COX-2, TNF-α, IL-6, and IL-1β through NF-κB, AP-1, and STAT1/3 inactivation in DSS-induced colon tissue and LPS-induced RAW264.7 macrophages. Taken together, our findings suggest that hydrangenol recovers the tight junction proteins and down-regulates the expression of the pro-inflammatory mediators by interfering with the macrophage infiltration in DSS-induced colitis. Our study provides compelling evidence that hydrangenol may be a candidate for inflammatory bowel disease therapy.

Graphical abstract: Hydrangenol, an active constituent of Hydrangea serrata (Thunb.) Ser., ameliorates colitis through suppression of macrophage-mediated inflammation in dextran sulfate sodium-treated mice

Supplementary files

Article information

Article type
Paper
Submitted
10 Apr 2023
Accepted
04 Jul 2023
First published
12 Jul 2023

Food Funct., 2023,14, 6957-6968

Hydrangenol, an active constituent of Hydrangea serrata (Thunb.) Ser., ameliorates colitis through suppression of macrophage-mediated inflammation in dextran sulfate sodium-treated mice

S. Kim, K. Chung, S. Jang, H. Han, S. Heo, J. K. Lee, H. J. Kim, Y. Shin, H. S. Ahn, S. H. Lee and K. Lee, Food Funct., 2023, 14, 6957 DOI: 10.1039/D3FO01243C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements