Issue 19, 2007

Rationalizing the different products in the reaction of N2 with three-coordinate MoL3 complexes

Abstract

The reaction of N2 with three-coordinate MoL3 complexes is known to give rise to different products, N–MoL3, L3Mo–N–MoL3 or Mo2L6, depending on the nature of the ligand L. The energetics of the different reaction pathways are compared for L = NH2, NMe2, N(iPr)Ar and N(tBu)Ar (Ar = 3,5-C6H3Me2) using density functional methods in order to rationalize the experimental results. Overall, the exothermicity of each reaction pathway decreases as the ligand size increases, largely due to the increased steric crowding in the products compared to reactants. In the absence of steric strain, the formation of the metal–metal bonded dimer, Mo2L6, is the most exothermic pathway but this reaction shows the greatest sensitivity to ligand size varying from significantly exothermic, −403 kJ mol−1 for L = NMe2, to endothermic, +78 kJ mol−1 for L = N(tBu)Ar. For all four ligands, formation of N–MoL3via cleavage of the N2 bridged dimer intermediate, L3Mo–N–N–MoL3, is strongly exothermic. However, in the presence of excess reactant MoL3, formation of the single atom-bridged complex L3Mo–N–MoL3 from N–MoL3 + MoL3 is both thermodynamically and kinetically favoured for L = NMe2 and N(iPr)Ar, in agreement with experiment. In the case of L = N(tBu)Ar, the greater steric bulk of the tBu group results in a much less exothermic reaction and a calculated barrier of 66 kJ mol−1 to formation of the L3Mo–N–MoL3 dimer. Consequently, for this ligand, the energetically and kinetically favoured product, consistent with the experimental data, is the nitride complex L3Mo–N.

Graphical abstract: Rationalizing the different products in the reaction of N2 with three-coordinate MoL3 complexes

Supplementary files

Article information

Article type
Paper
Submitted
23 Jan 2007
Accepted
09 Mar 2007
First published
26 Mar 2007

Dalton Trans., 2007, 1939-1947

Rationalizing the different products in the reaction of N2 with three-coordinate MoL3 complexes

G. Christian, R. Stranger, B. F. Yates and C. C. Cummins, Dalton Trans., 2007, 1939 DOI: 10.1039/B701050H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements