Issue 24, 2023

Conformational dynamics and mechanical properties of biomimetic RNA, DNA, and RNA–DNA hybrid nanotubes: an atomistic molecular dynamics study

Abstract

With the nanotechnology boom, artificially designed nucleic acid nanotubes have aroused interest due to their practical applications in nanorobotics, vaccine design, membrane channels, drug delivery, and force sensing. In this paper, computational study was performed to investigate the structural dynamics and mechanical properties of RNA nanotubes (RNTs), DNA nanotubes (DNTs), and RNA–DNA hybrid nanotubes (RDHNTs). So far, the structural and mechanical properties of RDHNTs have not been examined in experiments or theoretical calculations, and there is limited knowledge regarding these properties for RNTs. Here, the simulations were carried out using the equilibrium molecular dynamics (MD) and steered molecular dynamics (SMD) approaches. Using in-house scripting, we modeled hexagonal nanotubes composed of six double-stranded molecules connected by four-way Holliday junctions. Classical MD analyses were performed on the collected trajectory data to investigate structural properties. Analyses of the microscopic structural parameters of RDHNT indicated a structural transition from the A-form to a conformation between the A- and B-forms, which may be attributable to the increased rigidity of RNA scaffolds compared to DNA staples. Comprehensive research on the elastic mechanical properties was also conducted based on spontaneous thermal fluctuations of nanotubes and employing the equipartition theorem. The Young's modulus of RDHNT (E = 165 MPa) and RNT (E = 144 MPa) was found to be almost the same and nearly half of that found for DNT (E = 325 MPa). Furthermore, the results showed that RNT was more resistant to bending, torsional, and volumetric deformations than DNT and RDHNT. We also used non-equilibrium SMD simulations to acquire comprehensive knowledge of the mechanical response of nanotubes to tensile stress.

Graphical abstract: Conformational dynamics and mechanical properties of biomimetic RNA, DNA, and RNA–DNA hybrid nanotubes: an atomistic molecular dynamics study

Supplementary files

Article information

Article type
Paper
Submitted
04 Mar 2023
Accepted
28 May 2023
First published
01 Jun 2023

Phys. Chem. Chem. Phys., 2023,25, 16527-16549

Conformational dynamics and mechanical properties of biomimetic RNA, DNA, and RNA–DNA hybrid nanotubes: an atomistic molecular dynamics study

E. Torkan and M. Salmani-Tehrani, Phys. Chem. Chem. Phys., 2023, 25, 16527 DOI: 10.1039/D3CP01028G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements