Issue 4, 2024

Mogroside V alleviates inflammation response by modulating miR-21-5P/SPRY1 axis

Abstract

Mogroside V (MV) is a natural sweetener extracted from the edible plant Siraitia grosvenorii that possesses anti-inflammatory bioactivity. It has been reported that microRNAs (miRNAs) play an important role in the inflammation response suppression by natural agents. However, whether the anti-inflammation effect of mogroside V is related to miRNAs and the underlying mechanism remains unclear. Our study aimed to identify the key miRNAs important for the anti-inflammation effect of MV and reveal its underlying mechanisms. Our results showed that MV effectively alleviated lung inflammation in ovalbumin-induced (OVA-induced) asthmatic mice. miRNA-seq and mRNA-seq combined analysis identified miR-21-5p as an important miRNA for the inflammation inhibition effect of MV and it predicted SPRY1 to be a target gene of miR-21-5p. We found that MV significantly inhibited the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), and nitric oxide (NO), as well as the protein expression of p-P65/P65, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in OVA-induced asthmatic mice and LPS-treated RAW 264.7 cells. Moreover, the release of ROS increased in LPS-stimulated RAW 264.7 cells but was mitigated by MV pretreatment. In the meantime, the expression of miR-21-5p was decreased by MV, leading to an increase in the expression of SPRY1 in RAW 264.7 cells. Furthermore, miR-21-5p overexpression or SPRY1 knockdown reversed MV's protective effect on inflammatory responses. Conversely, miR-21-5p inhibition or SPRY1 overexpression enhanced MV's effect on inflammatory responses in LPS-exposed RAW 264.7 cells. Therefore, the significant protective effect of mogroside V on inflammation response is related to the downregulation of miR-21-5p and upregulation of SPRY1 in vitro and in vivo, MiR-21-5p/SPRY1 may be novel therapeutic targets of MV for anti-inflammation treatment.

Graphical abstract: Mogroside V alleviates inflammation response by modulating miR-21-5P/SPRY1 axis

Supplementary files

Article information

Article type
Paper
Submitted
26 May 2023
Accepted
04 Jan 2024
First published
11 Jan 2024

Food Funct., 2024,15, 1909-1922

Mogroside V alleviates inflammation response by modulating miR-21-5P/SPRY1 axis

M. Han, H. Liu, G. Liu, X. Li, L. Zhou, Y. Liu, T. Dou, S. Yang, W. Tang, Y. Wang, L. Li, H. Ding, Z. Liu, J. Wang and X. Chen, Food Funct., 2024, 15, 1909 DOI: 10.1039/D3FO01901B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements