Physico-chemical processes in imidazolium ionic liquids
Abstract
Among the various properties exhibited by ionic liquids (ILs)—especially those based on the imidazolium cation—their inherent ionic patterns, very low vapour pressure and pronounced self-organization in the solid, liquid and even in the gas phase are particularly interesting since this allows the use of these fluids as alternative and complementary media to classical organic solvents and water in many applications. Hence, reaction paths that involve charge-separated intermediates or transition states are accelerated—by lowering the activation barrier—in the presence of ILs when compared with those performed in classical organic solvents. It is also possible, for example, to observe, by electrochemical methods, transient species (ionic and radical) that are otherwise undetectible in water or in molecular organic solvents and to investigate the interactions and behaviour of molecular, biological and macromolecular species in solution using physical and chemical methods which require special conditions such as high-vacuum, and which have been traditionally limited to solid state chemistry.