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Enhanced linear and symmetric synaptic weight
update characteristics in a Pt/p-LiCoOx/p-NiO/Pt
memristor through interface energy barrier
modulation by Li ion redistribution
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Artificial synaptic devices have been extensively investigated for neuromorphic computing systems, which

require synaptic behaviors mimicking the biological ones. In particular, a highly linear and symmetric

weight update with a conductance (or resistance) change for potentiation and depression operation is

one of the essential requirements for energy-efficient neuromorphic computing; however, it is not

sufficiently met. In this study, a memristor with a Pt/p-LiCoOx/p-NiO/Pt structure is investigated, where a

low interface energy barrier between the Pt electrode and the NiO layer makes for a more linear and sym-

metric conductance change. In addition, the use of voltage-driven Li+ ion redistribution in the NiO layer

facilitates the analog conductance change at a low voltage. Besides the linear and symmetric potentiation

and depression weight updates, the memristor exhibits various synaptic characteristics such as the depen-

dence of weight update on the pulse amplitude and number, paired pulse facilitation, and short-term and

long-term plasticity. The conductance modulation is thought to be induced by a tunable interface energy

barrier at the NiO layer and Pt bottom electrode, as a result of Li+ ion diffusion in NiO supplied from the

LiCoOx layer and their redistribution. Thanks to the use of Li+ ion redistribution, the conductance change

could be achieved at a voltage <4 V within the time of μs range. These results verify the potential of artifi-

cial synapses with the Pt/LiCoOx/NiO/Pt memristor operated by voltage-driven Li+ ion redistribution

under the low interface energy barrier conditions, realizing a highly linear and symmetric weight update at

a low voltage with a high speed for energy-efficient neuromorphic computing systems.

1. Introduction

In the current big data era, silicon CMOS-based computing
systems face challenges due to their limited device scaling and
accompanying technology development. In addition, the per-
formance gap expanding between memory and processor as
well as physical separation between memory and processor
(known as “memory wall” problem) causing the von Neumann
bottleneck make the current computing hardware and archi-
tectures inefficient for data-intensive computing like artificial
intelligence.1 In this point of view, the needs to develop new
computing hardware and architectures keep increasing.
Neuromorphic computing is considered to be one of the emer-
ging new computing architectures to efficiently deal with a

vast amount of data, overcoming the technology limit of the
von-Neumann computing architecture. This new computing
architecture mimics the human brain that is made up of extre-
mely dense neural networks composed of ∼ 1011 neurons for
the computing element and ∼1015 synapses for the memory
element. These neurons and synapses forming a highly
complex network in the human brain conduct complicated
cognitive tasks such as pattern recognition and calculation
with a low energy consumption of ∼20 W.2,3 Neuromorphic
computing systems aim to mimic the human brain by con-
structing a parallel, three-dimensional, and compact neuron-
synapse network in hardware and processing the data in a par-
allel way at the architectural level.4

In the neuromorphic system, artificial neuron and synaptic
devices should be developed to operate their functions and
integrated together to mitigate the delay in data transfer as
opposed to the current von Neumann architecture. The artifi-
cial synaptic device as one of the essential elements should
conduct the processing of signals coming from pre-neurons
and deliver it to post-neurons in association with its synaptic
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weight. At the same time, the synapse should store the weight
information that is updated as a result of signal processing.
Therefore, an artificial synaptic device needs to be developed
to have tunable conductance corresponding to synaptic
weight, which is stored as updated weight through a
process known as synaptic plasticity for the learning process
of the human brain.5 Synaptic weight represents the
connection strength between neurons that could be strength-
ened for potentiation and weakened for depression.6 For a
more efficient computing operation, the synaptic weight
update is pursued to be analog, linear, and symmetric and to
have a wide dynamic range to enhance the range of memory
states.7,8

Among various candidate devices for artificial synapses,
two-terminal memristors have been extensively explored due to
their advantage of having a similar structure to the biological
neuron-synapse-neuron structure. Memristors exhibit tunable
conductance states depending on historical electrical signals
emulating the dynamic synaptic weight update behavior. If the
weight-tunable conductance change could be achieved in an
analog manner, it would enable to store multibit (or analog)
state information rather than storing digital-type information
in the binary state of 0 and 1.9 As among the two-terminal
memristor devices, resistive random access memory devices
(RRAM), including conductive bridge random access memory
(CBRAM) using a metallic filament, valence change memory
(VCM) with an oxygen-vacancy filament, and interfacial-type
RRAM with oxygen redistribution particularly at the interface,
have been reported to have low energy consumption down to
sub-pJ per synaptic event and good scalability for high-density
integration, forming a crossbar array structure with CMOS
compatibility.10–12

To date, RRAM devices with a variety of oxides have been
researched for synaptic device application, such as HfO2,

13–15

Ta2O3,
16–18 WOx,

19–21 TiO2,
22–24 CeO2,

7,25,26 ZnO,27–29 NiO,30–32

SrFeOx,
33 and PCMO.34,35 With respect to the resistance

change mechanism, filamentary-type CBRAM and VCM suffer
from a non-linear, digital-type and asymmetric resistance
change with a large device-to-device variation due to the
abrupt and stochastic nature of filament formation.5,36 In com-
parison, interfacial-type RRAM with the resistance change
associated with ion redistribution is thought to be more prom-
ising to achieve a precise and gradual resistance change in an
analog manner as well as resulting in various biological synap-
tic behaviors such as short-term and long-term plasticity (STP
and LTP), and paired pulse facilitation or depression (PPF and
PPD). In order to achieve more reliable control of ionic redistri-
bution, bilayer structures were also employed such as GDC/
CeO2,

7 WOx/TaOx,
37 TiO2/Al2O3,

38 AlOx/HfO2,
39 HfO2/Al2O3,

40

TaOx/TiO2,
41 HfO2/HfO2−x,

42 and HfOy/HfOx.
43

Particularly, for linear and symmetric weight update, the
identical incremental change of conductance should be
achieved in each conductance state. However, because the con-
ductance is dependent on the interface energy barrier such as
the Schottky barrier in many devices, it varies exponentially
with respect to the change of the energy barrier. Thus, it is

hard to control this barrier to realize a linear conductance
change. As a result, the conductance is generally found to be
more abruptly changed at the initial stage of high resistance
and decrease as the resistance decreases, resulting in a non-
linear and asymmetric conductance change. This occurs more
apparently in the system with a high interface energy barrier
when the oxides are n-type and metal electrodes have a high
work function (e.g. Pt).

In that sense, it is preferred to employ metal oxide and elec-
trode materials that have a low interfacial energy barrier that
could prevent an abrupt conductance change and provide a
precisely tunable barrier by ion redistribution within the
layers. For this, if a p-type oxide is used instead of an n-type
oxide, a lower interface barrier would be formed with a high
work function metal electrode (e.g. Pt); therefore, the current
changes in an analog manner with a good linearity. Although
it brings out a concern of a large current flow due to a low
Schottky barrier, it could be mitigated by scaling down the
device size because the current of the interfacial-type memris-
tor is proportional to the device size.

In this study, a memristor consisting of p-type LiCoOx and
p-type NiO bilayer structures with a Pt electrode, i.e., Pt/
p-LiCoOx/p-NiO/Pt, is proposed as an artificial synapse and its
synaptic behaviors are investigated. LiCoOx is actively used as
the cathode material in Li-ion batteries. It exhibits p-type oxide
characteristics which are associated with the presence of trace
amounts of Co4+ ions.44 It has a layered structure and Li+ ions
exist between the layers composed of cobalt oxides. Due to the
weak van der Waals force between cobalt oxides, Li+ ions can
migrate easily with a high ionic diffusivity.45,46 NiO is also a
p-type oxide with a band gap energy of about 3.6–4.0 eV.47,48 It
has been researched for various applications, such as gas
sensors,49 perovskite light emitting diodes,50 electrochromic
displays51 and RRAM devices.52 Its p-type characteristics come
from the presence of Ni vacancies and the resulting Ni3+

ions.53 Herein, it is expected that a thin LiCoOx layer supplies
Li+ ions to the NiO layer, and their redistribution would conse-
quently change the interfacial energy barrier and conductance
state. The use of Li+ ions to modulate the conductance for arti-
ficial synapse has been explored in many studies because the
Li+ ion works as a dopant in many oxides and easily redistri-
butes, thanks to its low mass. For example, Zhang et al.
reported a memristor with porous MoS2 nanosheets and a
porous SiOx structure operated by the formation of conductive
paths for Li+ ions enabling multilevel-ion dynamics.54 Kim
et al. reported a Li-based memristor where the resistance
changed with the relative fraction of Li7Ti5O12 as a metallic
phase and Li4Ti5O12 as an insulating phase.55 Meng et al. pro-
posed a Li+-doped organic artificial memristor that exhibited a
gradual resistance change with multi-state storage using Li
doped PEDOT:PSS.56 Despite the advantage of using Li+ ions
for low voltage and high speed operation, there is a reliability
concern due to its poor CMOS compatibility.57 However, this
concern could be addressed by appropriate engineering of pas-
sivating the device and integrating devices in the back-end of
line (BEOL) of the system.
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2. Experimental

The Pt/LiCoOx/NiO/Pt memristors illustrated in the inset of
Fig. 1(a) were fabricated as follows: first, a 70 nm-thick bottom
Pt electrode (BE) was deposited on a SiO2/Si substrate with a
3 nm-thick Ti adhesion layer through e-beam evaporation
(FC-2000, Temescal). Then, a 25 nm-thick NiO layer was de-
posited by radio-frequency (RF) magnetron sputtering using a

NiO target in Ar. Next, a 10 nm-thick LiCoOx layer was de-
posited on the NiO layer by RF magnetron sputtering using a
LiCoOx target in Ar. Subsequently, a 70 nm-thick Pt top elec-
trode (TE) was deposited by e-beam evaporation using a
shadow mask with a diameter of 100 μm. Finally, the device
was passivated with a SiO2 layer deposited by RF magnetron
sputtering with a thickness of about 50 nm to protect the
device from being exposed to the atmosphere.

Fig. 1 (a) and (b) Cross-sectional high-resolution TEM images, schematic illustration, and optical microscopy image of the Pt/LiCoOx/NiO/Pt mem-
ristor, (c) its SADP, (d) its compositional EDS line scan and (e) elemental mapping data.
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For the electrical characteristic assessments of the device,
current–voltage (I–V) curves were obtained by a DC voltage
sweep using an Agilent 4156B semiconductor parameter analy-
zer. In addition to I–V characteristics, the conductance change
characteristics as synaptic behaviors by successive pulse appli-
cation were evaluated using Agilent 4156B and Keithley
4200A-SCS semiconductor parameter analyzers. The structural
and composition analyses were conducted using transmission
electron microscopy (TEM; JEM-2100F, JEOL) combined with
energy-dispersive spectroscopy (EDS). The chemical compo-
sitional distribution was examined by time-of-flight secondary
ion mass spectroscopy (TOF-SIMS; TOF.SIMS 5, ION TOF).
CrossSim Ver. 2.0 Training was used for benchmarking the
pattern recognition performance of the fabricated synapic
device.58 At the algorithm level, the neural network consists of
3 layers, 784 input neurons, 300 hidden neurons, and 10
output neurons. Random initial weights were used for the run.
Sigmoid function was used for the first and second layers and
Softmax function was used for the last layer. The circuit level
noise was neglected for better comparison of the device per-
formances. For the learning rate, a default value of simulation
was used. For training and testing, the Modified National
Institute of Standards and Technology (MNIST) data set was
used.59 For each epoch, 60 000 images were used for training
and the pattern recognition accuracy was tested with 10 000
images.

3. Results and discussion

The cross-sectional high-resolution TEM (HRTEM) images in
Fig. 1(a) and (b) show the stacked structure of Pt TE, LiCoOx,
NiO, and Pt BE layers. The relatively bright part near the Pt TE
presents a thin polycrystalline LiCoOx layer. The NiO layer
under LiCoOx is also confirmed to be polycrystalline. The
enlarged image in Fig. 1(b) confirms a relatively rough and
unclear interface between NiO and LiCoOx layers, which is
thought to come from either the polycrystalline structure of
the underlying NiO layer with a rough surface or intermixing
during deposition as a result of fast Li+ ion diffusion. Fig. 1(c)
shows the selected area diffraction patterns (SADPs) of Pt,
LiCoOx, and NiO layers. The polycrystalline LiCoOx, NiO and
Pt layers were verified from the SADP results. These patterns
matched well with rhombohedral LiCoO2 (JCPDS 50-0653),
cubic NiO (JCPDS 89-7130) and the Pt electrode. The compo-
sitional EDS line scan and elemental mapping data are shown
in Fig. 1(d) and (e). The LiCoOx layer can be clearly distin-
guished from the NiO layer with the Co signal from the LiCoOx

layer.
TOF-SIMS analysis was conducted for more accurate detec-

tion of Li+ ions, which is crucial for the conductance of the Pt/
LiCoOx/NiO/Pt memristor. The analysis was processed in nega-
tive mode by sputtering Cs+ ions. Fig. 2 shows the atomic
spectra in the pristine state of the Pt/LiCoOx/NiO/Pt memris-
tor. The SiO2 capping layer, Pt TE, LiCoOx, NiO, and Pt BE
layers were confirmed using the spectra. In Li− spectra, it is

notable that the Li atoms or ions are present inside the NiO
layer even in the pristine state before applying the bias. It veri-
fies that Li atoms or ions penetrated the NiO layer during
LiCoOx deposition on NiO by the sputtering process. It
coincides with the TEM analysis results where the boundary
between LiCoOx and NiO layers is not clearly distinct. As will
be discussed later, the infiltrated Li+ ions into the NiO layer
relocate under an electric field and consequently change the
conductance of the Pt/LiCoOx/NiO/Pt memristor. As the Li+ ion
is a light and easily movable element under the bias, the incor-
porated Li+ ions in the NiO layer acting as dopants could
modulate the interfacial energy barrier as being redistributed
upon biasing. The detailed conductance change mechanism
with respect to the profile of Li+ ions is discussed in Fig. 4.

Fig. 3(a) and (b) show the I–V curves of the Pt/LiCoOx/NiO/
Pt memristor under the DC voltage sweeps, where positive
voltage sweeps of 0∼+2 V in the double direction were applied
repeatedly 5 times at first. Then, the same number of negative
sweeps of 0∼–2 V in the double direction were repeated. In
this measurement, the additional forming operation was not
carried out. It clearly shows that the current increased sequen-
tially in the clockwise direction in the negative voltage sweeps
and reached over 10 times higher at −2 V after 25 times of con-
secutive sweeps. In contrast, the current was rarely changed in
the positive voltage sweeps even with counterclockwise hyster-
esis. In following negative voltage sweeps after positive sweeps,
the current increased again from almost initial level. It means
that the positive sweeps restored the changed conductance
mostly to the initial level. Though these I–V curves do not
show the decrease of current in the positive voltage region,
they confirm voltage polarity-dependent conductance changes
measured under the negative voltage read condition, which
mimics the synaptic weight modulation. As will be discussed
later, this conductance change comes from Li+ ion redistribu-
tion within the NiO layer. Through Li+ ion migration, the NiO/
Pt BE energy barrier gets modulated. Then, the conductance
increased or decreased consequently according to the height
of the energy barrier at NiO/Pt BE.

Fig. 2 TOF-SIMS results of the Pt/LiCoOx/NiO/Pt memristor.
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Fig. 3(c) and (d) show the I–V characteristics with the sweep
voltage range increased to ±3.5 V. The same as Fig. 3(a) and
(b), the current increased in the clockwise direction at the
negative voltage sweeps while remained or slightly decreased
at the positive voltage sweeps. The conductance change was
enhanced as the voltage sweep amplitude increased from ±2.0
to ±3.5 V, corresponding to stronger synaptic stimuli.

Fig. 4(a) shows the conductance change of the Pt/LiCoOx/
NiO/Pt memristor as log-scale plots in voltage pulse measure-
ments. The pulses of −2 V for potentiation and +2 V for
depression with a pulse width of 0.64 ms were applied con-
secutively 50 times for each operation. The read condition was
set at −1 V of amplitude and 0.64 ms of width. The cycle was
repeated 10 times. In all measurements, the current changed
barely at the first depression pulses of +2 V (blue circles).
Then, the current increased gradually in a linear form during
successive negative pulses, which corresponds to potentiation
(red circles). The current increased about 30 times from the
initial value at the first potentiation cycle. In the following
cycle of positive pulses, the current gradually decreased
mimicking the depression behavior. A decrease in current

starts at a current value little higher than the last current of
potentiation, which is thought to be due to the charging effect
present in the device. Though the conductance was not comple-
tely restored to its initial value, the range of conductance modu-
lation through entire cycles of potentiation and depression was
found to be uniform. It is also notable that the depression behav-
ior is observed only after the potentiation operation. As explained
in Fig. 5 for a detailed mechanism, the conductance modulation
comes from the distribution of Li+ ions that penetrate from the
LiCoOx layer upon biasing as well as introduced into the NiO
layer in advance during the sputtering process.

Fig. 4(b) is the linear plot of the conductance change
shown in Fig. 4(a). The weight update both at potentiation and
depression operation was found to be linear and symmetric
during the repeated cycles up to 1000 times of pulse appli-
cation. A highly linear and symmetrical weight update is one
of the crucial factors required for accurate pattern recognition
in the learning process.60 The pattern recognition simulation
results with the presented synaptic weight update character-
istics using the CrossSim simulator will be discussed later in
Fig. 8.

Fig. 3 I–V curves of the Pt/LiCoOx/NiO/Pt memristor upon repeating positive and negative DC voltage sweeps in the (a) and (b) −2 to +2 V range
and (c) and (d) −3.5 to +3.5 V range.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2024 Nanoscale, 2024, 16, 5737–5749 | 5741

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
Fe

br
ua

ry
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/1
6/

20
26

 7
:1

3:
53

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3nr06091h


The uniformity of conductance change is important for
accurate weight update operation in the neural network. The
device-to-device and cycle-to-cycle variations obtained from 17
devices are presented in Fig. 4(c) and (d) for the potentiation
and depression operation, respectively. The repeated pulse
measurement results from 17 devices used for this variation
analysis are shown in Fig. 4(e). The degree of potentiation and
depression was obtained by measuring the current ratio at the
−1 V reading condition before and after the application of fifty
times −2 V pulse and fifty times +2 V pulse, respectively. Also,
the cycle-to-cycle variation was reflected from the values after
five cycles of potentiation and four cycles of depression. In
this evaluation, the first cycle of depression was excluded

because the current changed barely at the first depression. The
results show that the mean values (μ) of the degree of poten-
tiation and depression are 8.3 and 6.8 with standard deviations
(σ) of 2.8 and 1.7, respectively, corresponding to 34 and 25%
distribution in potentiation and depression, respectively.

The conductance change mechanism in the Pt/LiCoOx/NiO/
Pt memristor was proposed as shown in Fig. 5, based on the
energy band of each layer, the analysis results of the presence
of introduced Li+ ions in the NiO layer, plausible supply of Li+

ions from LiCoOx into NiO, and redistribution of Li+ ions
within the NiO layer. In this mechanism, the role of Li+ ions in
the NiO layer is a decisive factor for conductance change.
Assuming that the Li+ ions act as dopants in NiO, two oppos-

Fig. 4 Potentiation and depression behaviors of the Pt/LiCoOx/NiO/Pt memristor by voltage pulse measurements: (a) and (b) conductance change
upon repeating +2 and −2 V pulse application and read at −1 V on log and linear scales, respectively, (c) and (d) degree of potentiation and
depression obtained from (e) the conductance change of 17 devices.
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ing conditions should be considered for the effect of Li+ ions
on the doping state of the NiO layer. The first one is if Li+ ions
filled Ni vacancies, the hole concentration generated from Ni
vacancies would be reduced, thereby making NiO less p-type.
The other is if Li+ ions substituted Ni2+ sites, more holes
would be created, then the NiO layer would be more p-type
consequently.

Therefore, the effect of Li doping on the doping state of the
NiO layer would be determined competitively based on
whether incorporated Li+ ions would make NiO more or less
p-type depending on their occupation sites.61 In this Pt/
LiCoOx/NiO/Pt memristor, the tendency of conductance
change with respect to the bias polarity coincides well with
that Li+ ions fill Ni vacancies to make NiO less p-type. Because
the LiCoOx layer is found to be much thinner than the NiO
layer from the TEM results, the overall conductance is
assumed to be determined dominantly by the doping state of
the NiO layer and the resulting interfacial energy barrier with
Pt BE. Although not shown here, the current range increased
proportionally to the electrode area, verifying that the conduc-
tance change is induced by the modulation at the interface. In
addition, it is also considered that Li+ ions are already distrib-
uted in the NiO layer close to Pt BE according to TOF-SIMS
results in Fig. 2.

As illustrated in Fig. 5(a), both LiCoOx and NiO layers are
p-type doped and some amount of Li+ ions are already present
in the NiO layer even before biasing. As negative voltage is
applied to the Pt TE for potentiation, Li+ ions in the NiO layer

assemble close to the Pt TE and are depleted near the Pt BE,
making NiO near Pt BE more p-type. As a result, the energy
barrier at the NiO/Pt(BE) interface is decreased. Consequently,
the conductance measured at −V increased with increased
hole charge transport, and potentiation behavior occurs as
shown in Fig. 5(b). In contrast, when positive voltage is
applied to Pt TE as shown in Fig. 5(c), Li+ ions are repelled
from the Pt TE interface and assembled near at the interface
with Pt BE. Then, the energy barrier at NiO/Pt(BE) increases,
and consequently conductance is reduced as depression be-
havior at the −V read condition for hole charge transport
(Fig. 5(c)).

This interpretation that Li+ ion redistribution in the NiO
layer plays a decisive role in conductance modulation explains
well the voltage-polarity dependence of conductance change.
The linear weight modulation in the present device is attribu-
ted mostly to the device structure having a low interface energy
barrier in the combination of high work function Pt BE and
p-type NiO with inserted thinner p-LiCoOx. In addition, the
gradual energy barrier modulation by the redistribution of fast
movable Li+ ions in the NiO layer would facilitate the linear
weight update without abrupt changes.

In addition, Pt/LiCoOx/NiO/Pt memristors exhibit various
synaptic characteristics. As shown in Fig. 6(a), the time-depen-
dent decay of synaptic weight (retention properties) for
10 minutes was examined with respect to the pulse amplitude
after potentiation by applying 50 times of −2, −2.5, −3, and
−3.5 V pulses with 0.64 ms of pulse width and then reading
the current at −1 V of the read condition. After repeating −2 V
pulse application, the current increased from an initial value
of 6.84 to 78.7 nA, then decreased back to 6.55 nA after
10 minutes. The decay to almost initial value implies the STP
characteristics of the memristor when the voltage pulse ampli-
tude was low to be −2 V. As the potentiation pulse amplitude
increased, the current increased higher and it was not comple-
tely restored but remained to be higher than the initial value
as LTP characteristics. Under the condition of −3.5 V pulse
amplitude, the current increased from 6.05 nA to 11.4 μA by
about 2000 times. Then, it decayed to 0.21 μA, which is still 35
times higher than the initial state. The current levels for each
amplitude could be sufficiently distinguishable even after
decay, describing multi-state retention characteristics depend-
ing on the pulse amplitude. These time-dependent character-
istics show the potential of the device to emulate the synaptic
properties such as PPF, STP and LTP. However, even with the
potential application of time-dependent characteristics, this
decay of conductance over time frequently observed in the
interface-type devices7,62 needs to be alleviated to achieve long-
term reliability of weight storage.

The synaptic weight was further enhanced with the increase
of pulse application number as shown in Fig. 6(b). The current
was read at −1 V for 10 minutes after applying −2 V of poten-
tiation pulse for 50, 100, 150, 200, and 500 times. It also shows
the same tendency of the increase of current and subsequent
decay over time due to the condition of low amplitude (−2 V)
of potentiation. Nevertheless, it decayed less with the increase

Fig. 5 Schematic illustration of mechanisms with NiO/Pt(BE) interfacial
energy band modulation: (a) initial state of the Pt/LiCoOx/NiO/Pt mem-
ristor, (b) potentiation by applying a −V to the TE and (c) depression by
applying a +V to the TE.
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of pulse repetition number to strengthen the stability of the
updated weight.

Fig. 6(c) shows clearly the PPF characteristics and the STP
to LTP transition with the increase of pulse amplitude. In this
measurement, the current was read at −1 V 6 times with 10
seconds of interval after the application of potentiation pulses
10 times each. This cycle was repeated 5 times. In all cases of
pulse amplitude from −2 to −3.5 V, the current increased by
potentiation pulse and then decayed over time. However, the
following potentiation pulse increased the current higher than
the previous pulse, corresponding to the PPF characteristics.
The PPF is one type of STP characteristics. When two pulses
are applied successively, the second pulse generates a larger
excitatory postsynaptic current (EPSC) than the first one. The
PPF characteristics are assessed with the PPF index (b/a),
where a and b represent the current after the first and the
second pulse, respectively. In all cases, the PPF indices are
higher than unity, ranging from 3.19 to 7.85, which confirms
the PPF behaviors.

Another notable feature is the transition from STP to LTP
by repeating the cycles. For example, at a pulse amplitude of

−2 V, the current increased from 4.4 to 55.4 nA at first and
then decayed to 36.7 nA. After repeating this cycle 5 times, the
current remained to be 212.2 nA with less decay, which corres-
ponds to the transition from STP to LTP as a result of
reinforced synaptic weight by repeated pulse application, i.e.,
repeated stimulation of synapses. Under the condition of the
highest amplitude of −3.5 V, the current change was further
enhanced to a final current of 1.70 μA, which is over two
hundred times higher than its initial value (6.45 nA) with the
lowest decay.

Fig. 7(a) shows the sequential change of current by repeat-
ing potentiation and depression pulse application on a linear
scale. In this measurement, the current change was monitored
in real time during the potentiation and depression pulsing.
The change of current during potentiation was also depicted
on a log scale as shown in Fig. 7(b). Also, it is enlarged in
Fig. 7(c). The measurements were conducted by applying 15
times of −4 V potentiation pulse with 1 ms of pulse width, fol-
lowed by application of +4 V of depression pulse 15 times with
the same width. After each potentiation and depression pulse,
the current was read at −2 V with 1 ms of width to clearly

Fig. 6 Synaptic properties of the Pt/LiCoOx/NiO/Pt memristor; retention results of (a) depending on the potentiation pulse amplitude and (b)
number of pulse application, and (c) PPF characteristics.
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examine the weight update dynamics. As shown in Fig. 7(a),
the current was read to be increased gradually and decreased
as repeating the potentiation and depression pulse appli-
cation. Particularly in the log scale graph (Fig. 7(b)), the
current read at −2 V increased about 10 times from 0.3 to 3 μA

after 15 times of potentiation pulse application. More interest-
ingly, the current measured during −4 V of potentiation pulse
application increased gradually throughout the pulse width of
1 ms. As enlarged in Fig. 7(c), the current increased continu-
ously during 1 ms of −4 V potentiation pulse width, for

Fig. 7 Pulse application results of (a) linear scale and (b) log scale in potentiation, and (c) enlarged image of last pulse of (b).
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example from 25 to 38 μA within 1 ms during the last pulse
step. In this measurement, it was set to obtain the current
value in every 16 μs. Then, it corresponds to the linear current
change of about 0.2 μA during 16 μs as shown in the right

figure in Fig. 7(c). The required minimum increment of
current and resolution of weight update would depend on the
kind of application and sensing amplification systems.
Accordingly, its operation speed would be evaluated to be in

Fig. 8 (a) Pulse application results used in simulation, probability distribution of G (conductance) for (b) potentiation and (c) depression, and (d)
pattern recognition accuracy.
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the μs time range or potentially even faster. The reason why
the Pt/LiCoOx/NiO/Pt memristor has a high operating speed at
a low voltage is thought to be that Li+ ions move fast through
the NiO layer.

As mentioned above, the highly linear and symmetric
weight update is crucial for energy efficient and accurate
pattern recognition capability. The pattern recognition accu-
racy was assessed using CrossSim Ver.2.0. Fig. 8(a) shows
pulse data used in this simulation and Fig. 8(b) and (c) show
the probability distribution of potentiation and depression by
generating lookup tables, respectively. The CrossSim simu-
lation program employs a numeric matrix update model,
which takes experimentally measured potentiation and
depression results and generates the ΔG vs. G plot, where G is
the conductance.58 Then, it simulates the accuracy using the
ΔG vs. G plot. For each pulse, the simulator finds the average
update (ΔG) in the G state and its probability distribution. In
addition, a part of the potentiation and depression weight
results was chosen in the simulation for accuracy calculation
to minimize the noise effect.63 In this simulation, 80% of the
conductance range was used and the simulation result is given
in Fig. 8(d). The pattern recognition accuracy of the device
reached about 90.2% at the first epoch of training. This value
is comparable to the simulation results of 97.3% under the
condition of completely linear potentiation and depression
with a uniform dynamic range, while maintaining all other
input parameters the same. Higher accuracy in the completely
linear case indicates that the improved linearity in potentiation
and depression would realize even higher pattern recognition
accuracy.

4. Conclusions

The Pt/p-LiCoOx/p-NiO/Pt memristor is proposed as an artifi-
cial synapse, devised to achieve a highly linear and symmetric
weight update by forming a lower Schottky energy barrier with
p-type oxides and high work function metals. The proposed
device exhibited a highly linear and symmetric synaptic weight
update for potentiation and depression, as well as the depen-
dence of weight update on the pulse amplitude and pulse
application number, PPF, and STP and LTP characteristics.
These improved synaptic properties are thought to come from
the Li+ ion redistribution within the NiO layer according to the
bias condition. As a result of Li+ ion movement, the interface
barrier between NiO and Pt BE was modulated, and then the
potentiation and depression characteristics appeared accord-
ingly. The application of negative pulse at the Pt TE depleted
Li+ ions at the NiO/Pt(BE) interface, which reduced the energy
barrier and consequently increased the conductance for hole
charge transport as potentiation. Applying a positive pulse
made Li+ ions near the Pt BE, resulting in an increased barrier
and consequent resistance as depression. The pulse appli-
cation showed a linear and continuous current change within
1 ms of width, demonstrating potential high-speed operation
in the μs time range or even faster for weight update. The

simulation of pattern recognition using the MNIST data set
shows a learning accuracy of 90.4% after 15 epochs. Thanks to
the use of fast and movable Li+ ions and an appropriately low
energy barrier structure, the device enables a highly linear and
symmetric weight update operation with a low voltage and
high speed as an artificial synapse for neuromorphic comput-
ing systems.
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