Issue 8, 2025

An unprecedented double photoexcitation mechanism for photoswitching in conjugated-dienes to trigger physiological processes for photopharmacology

Abstract

The optical control of physiological processes with high precision using photoswitches is an emerging strategy for non-invasive diagnosis and therapies, providing innovative solutions to complex biomedical challenges. Light-responsive cyclic conjugated-dienes (cCDs) have long been recognized for their 4π-photocyclization; however, photoswitching behaviour in medium-sized cCDs has recently been reported, representing a pioneering discovery in the field. Reinforced by previous experimental evidence corroborating the Woodward–Hoffmann rules, this report provides insight into the origin of the exotic dual photoexcitation mechanism devised to achieve thermo-reversible photoswitching in large cCDs with cyclodeca-1,3-diene as a prototype. The operation of this mechanism enables access to four distinct photoisomers during a single photoswitching cycle, introducing new dimensions to the functionality of cCDs. Energy profiles calculated using M06-2X align closely with those obtained from DLPNO-CCSD(T), indicating its reliability as a method for predicting these systems, offering a balance between accuracy and computational cost. Time-dependent DFT calculations reveal that the important excitation wavelength of cCDs is significantly red-shifted compared to their photoproducts. The interaction behaviour of these isomers with β-barrel proteins was also analysed using molecular dynamics simulations to rationalize their potential for photopharmacology. The outcomes of the simulations show that photoisomers engage in different interactions inside the cavity, prompting variable conformational changes in the protein. Thus, the versatile architecture of cCDs can expand the toolbox of photoswitch designs for photoresponsive pharmaceuticals with photoisomers serving as mediators for precise reversible optical regulation of biological systems.

Graphical abstract: An unprecedented double photoexcitation mechanism for photoswitching in conjugated-dienes to trigger physiological processes for photopharmacology

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
03 Oct 2024
Accepted
29 Dec 2024
First published
30 Dec 2024

Org. Biomol. Chem., 2025,23, 1909-1922

An unprecedented double photoexcitation mechanism for photoswitching in conjugated-dienes to trigger physiological processes for photopharmacology

A. A. Sangolkar, R. K. Kadiyam and R. Pawar, Org. Biomol. Chem., 2025, 23, 1909 DOI: 10.1039/D4OB01603C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements