Issue 13, 2024

Investigation of umami peptides and taste mechanisms in Agrocybe aegerita: based on sensory evaluation and molecular docking techniques

Abstract

In the present study, sensory orientation and instrumental analysis were employed to separate, purify, and identify umami peptides in Agrocybe aegerita hydrolysate. Using UPLC-ESI-Q-TOF MS, 11 potential umami peptides (EY, EG, EV, ENG, PEG, DEL, ECG, DDL, PEEL, EDCS and DGPL) were identified from the screened fractions. Moreover, sensory evaluation and E-tongue results showed that the identified umami peptides had umami attributes, within an umami threshold range of 0.0625–0.25 mg mL−1. In addition, DDL and DEL exhibited the highest umami flavor intensity. Molecular docking analysis further showed that 4 umami peptides (namely, EY, EG, ECG, and DGPL) entered the T1R1 cavity of the umami receptor. Additionally, 4 umami peptides (namely, EV, ENG, DEL, and EDCS) could be embedded in the binding pocket of the T1R3 cavity. Furthermore, 3 umami peptides (PEG, DDL, and PEEL) strongly interacted with T1R1/T1R3. Thus, the findings collectively indicated that the predominant interacting forces between umami peptide and umami receptor are hydrogen bonding and hydrophobic interactions. Finally, it was shown that the primary binding sites of T1R1 were residues Ser109, Gln52 and Ser148, while the primary binding sites of T1R3 were residues Ser172, Arg277 and Ala170. The study identified the umami peptides in A. aegerita for the first time, which provided more information for the umami research of A. aegerita and provided the theoretical basis for the further development and utilization of A. aegerita.

Graphical abstract: Investigation of umami peptides and taste mechanisms in Agrocybe aegerita: based on sensory evaluation and molecular docking techniques

Supplementary files

Article information

Article type
Paper
Submitted
24 Mar 2024
Accepted
08 Jun 2024
First published
10 Jun 2024

Food Funct., 2024,15, 7081-7092

Investigation of umami peptides and taste mechanisms in Agrocybe aegerita: based on sensory evaluation and molecular docking techniques

F. Yang, R. Cao, A. Fu, Y. Liu and S. Bi, Food Funct., 2024, 15, 7081 DOI: 10.1039/D4FO01369G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements