Issue 30, 2007

Main-chain, statistically sulfonated proton exchange membranes: the relationships of acid concentration and proton mobility to water content and their effect upon proton conductivity

Abstract

An in-depth analysis has been developed for proton exchange membranes to examine the effect of acid concentration and effective proton mobility upon proton conductivity as well as their relationship to water content. The analysis was carried out on a series of main-chain, statistically sulfonated polymers with varying ion-exchange capacities. These polymer systems consisted of: sulfonated poly(ether ether ketone) (1), poly(ethylenetetrafluoroethylene-graft-polystyrenesulfonic acid) (2), sulfonated polyimide (3) and BAM® membrane (4) with Nafion® (5) as baseline. They represent membranes comprising polyaromatic polymers (1 and 3), one of which is also a rigid-rod polymer (3), vinylic polymers (4) and a vinylic polymer polymerized inside a polymer matrix (2). In order to remove the differences in acid strength for the membranes, proton mobility values at infinite dilution (Xv = 1.0) and 25 °C were calculated and found to be 3.2 (±0.4) × 10−3 cm2 s−1 V−1 (1), 2.9 (±0.4) × 10−3 cm2 s−1 V−1 (2), 1.6 (±0.7) × 10−3 cm2 s−1 V−1 (3) and 2.1 (±0.2) × 10−3 cm2 s−1 V−1 (4). These were then compared with the theoretical value for the mobility of a free proton at infinite dilution. Significant deviations from this value were theorized to be due to possible differences in tortuosity and proximity of acid groups.

Graphical abstract: Main-chain, statistically sulfonated proton exchange membranes: the relationships of acid concentration and proton mobility to water content and their effect upon proton conductivity

Article information

Article type
Paper
Submitted
15 Feb 2007
Accepted
08 Mar 2007
First published
03 Apr 2007

J. Mater. Chem., 2007,17, 3255-3268

Main-chain, statistically sulfonated proton exchange membranes: the relationships of acid concentration and proton mobility to water content and their effect upon proton conductivity

T. J. Peckham, J. Schmeisser, M. Rodgers and S. Holdcroft, J. Mater. Chem., 2007, 17, 3255 DOI: 10.1039/B702339A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements