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nce-enabled optimization of
battery-grade lithium carbonate production†

S. Shayan Mousavi Masouleh, ab Corey A. Sanz, c Ryan P. Jansonius, c

Samuel Shi,d Maria J. Gendron Romero,d Jason E. Hein c and Jason Hattrick-
Simpers *a

By 2035, the need for battery-grade lithium is expected to quadruple. About half of this lithium is currently

sourced from brines and must be converted from lithium chloride into lithium carbonate (Li2CO3) through

a process called softening. Conventional softening methods using sodium or potassium salts contribute to

carbon emissions during reagent mining and battery manufacturing, exacerbating global warming. This

study introduces an alternative approach using carbon dioxide (CO2(g)) as the carbonating reagent in the

lithium softening process, offering a carbon capture solution. We employed an active learning-driven

high-throughput method to rapidly capture CO2(g) and convert it to lithium carbonate. The model was

simplified by focusing on the elemental concentrations of C, Li, and N for practical measurement and

tracking, avoiding the complexities of ion speciation equilibria. This approach led to an optimized lithium

carbonate process that capitalizes on CO2(g) capture and improves the battery metal supply chain's

carbon efficiency.
1. Introduction

Lithium carbonate is a critical precursor for the production of
lithium-ion batteries which range from use in portable elec-
tronics to electric vehicles. In fact, battery applications account
for over 80% of all lithium produced globally and demand
a high purity level, with raw lithium carbonate (Li2CO3)
requiring a purity above 99%.1,2 Typically, lithium is sourced
from brines or clays in forms such as lithium chloride or sulfate
which are then converted to lithium carbonate through
a metathesis reaction. In this reaction, the chloride or sulphate
anion is replaced by carbonate, precipitating the insoluble
lithium carbonate product (see eqn (1)).1,3–5 This process, called
soening, must be performed such that impurities in the brine
are excluded from the product during crystallization, and the
crystal size is sufficiently large to facilitate ltration and
isolation.1,3,6

Conventional method: 2LiCl(aq) + Na2CO3(aq) #

2NaCl(aq) + Li2CO3(s) (1)
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Current study: 2LiCl(aq) + 2NH4OH(aq) + CO2(g) #

Li2CO3(s) + 2NH4Cl(aq) + H2O(l) (2)

The conventional approach to soening usually uses mined
sodium carbonate (Na2CO3) as the carbonate source, producing
soluble sodium chloride (NaCl), or sodium sulfate (Na2SO4) as
the reaction byproduct.3,4 The presence of these sodium salts in
the crystallization matrix can lead to inclusion within the
Li2CO3 crystals, resulting in a lower purity of the nal product.6,7

Moreover, the carbon atom sourced from mined sodium
carbonate salt is released as carbon dioxide gas (CO2(g)) into the
atmosphere during battery manufacturing. Additionally, the
mining and transporting of sodium (or potassium) carbonate
contributes to the overall carbon footprint of lithium carbonate
production.7

In contrast, our proposed method aims to utilize onsite-
produced CO2(g) as a carbonate source for soening. This
approach offers the potential to reduce the carbon footprint
associated with the soening process itself, remove sodium
from the solution, and potentially enhance the purity of the
nal Li2CO3 product. One approach is to react CO2(g) with an
aqueous solution of ammonium hydroxide (NH4OH) to produce
ammonium carbonate in situ ((NH4)2CO3);8,9 solutions of
lithium chloride (LiCl) can then be treated with this ammonium
carbonate to produce lithium carbonate (the net equilibrium
can be seen in eqn (2)). However, soening lithium brines with
ammonium carbonate involves complex equilibria governing
CO2(g) dissolution, Li2CO3 precipitation, and the reaction of
carbonic acid (a weak acid) with ammonium hydroxide (a weak
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Detailed equilibrium reactions in lithium brine softening using ammonium hydroxide and carbon dioxide gas

Vapor–liquid Solid formation
CO2(g) # CO2(aq) Eqn (3) NH4(aq)

+ + HCO3(aq)
− # NH4HCO3(s) Eqn (11)

NH3(g) # NH3(aq) Eqn (4) NH4(aq)
+ + NH2COO(aq)

− # NH2COONH4(s) Eqn (12)
H2O(g) # H2O(l) Eqn (5) 3NH4(aq)

+ + CO3(aq)
2− + HCO3(aq)

− + 2H2O(l) + NH3(aq) # 2(NH4)2CO3$H2O(s) Eqn (13)
4NH4(aq)

+ + CO3(aq)
2− + 2HCO3(aq)

− # (NH4)2CO3$2NH4HCO3(s) Eqn (14)

Liquid speciation Carbonate formation
NH3(aq) + H2O(l) # NH4(aq)

+ + OH(aq)
− Eqn (6) H2CO3(aq) # H(aq)

+ + HCO3(aq)
− Eqn (15)

CO2(aq) + H2O(l) # H(aq)
+ + HCO3(aq)

− Eqn (7)
HCO3(aq)

− # H(aq)
+ + CO3(aq)

2− Eqn (8) 2Li(aq)
+ + CO3(aq)

2− # Li2CO3(s) Eqn (16)
H2O(l) # H(aq)

+ + OH(aq)
− Eqn (9)

NH3(aq) + HCO3(aq)
− # NH2COO(aq)

− + H2O(l) Eqn (10)
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base).8,10,11 The reaction produces ammonium as a byproduct,
which is a weak acid that can protonate carbonate, hindering
Li2CO3 precipitation by converting dissolved carbonate ions
into bicarbonate.10 A system of multiple inter-related equilibria
describes this chemical system (Table 1). While this approach
reduces the carbon footprint associated with the soening
reaction itself, the overall environmental impact of the process
still depends on the sourcing and production methods of all
involved compounds, including ammonia. This highlights
opportunities for future investigations and optimizations to
further improve the process.

The goal of this work was to identify a set of reaction
conditions that maximizes lithium carbonate formation (eqn
(16)). Modeling this complex system of equilibria through
traditional thermodynamic approaches is challenged by the
multitude of independent chemical species, the numerous
inter-related reactions, and the possible importance of
kinetics.7 Experimental approaches to optimize this system
were similarly challenged by the complexity of the search space
and its potential nonlinearities. Among the few examples of
Li2CO3 production with CO2(g), M. Tian et al. observed that
increasing ammonium hydroxide concentration from 200 g L−1

to 400 g L−1 raised the yield from 43.0% to 49.6%.12 The highest
reported yield in similar systems (using LiOH) is about 73%
with 2 mol L−1 LiOH solution at 40 °C.13 In spite of the signif-
icance of Li2CO3 production and growing environmental
concerns emphasizing the development of carbon capture
reactions, studies on Li2CO3 production using CO2(g) remain
limited.

In recent years, high-throughput experimentation (HTE) has
been widely adopted for materials discovery and optimization
across various elds.14–18 HTE accelerates discovery and opti-
mization processes by conducting multiple small-scale experi-
ments simultaneously. However, utilizing HTE without the
intelligent selection of parameters and experiments can still be
both costly and challenging. The integration of articial intel-
ligence (AI) tools, particularly active learning, has greatly
advanced the eld of materials science.19–26 This integration has
given rise to AI-enabled HTE platforms, which offer an effective
way to intelligently navigate chemical space using active
learning techniques.15,19,27–29 Gaussian Process Regression (GPR)
models are among the most popular machine learning tools for
materials process optimization and active learning
© 2024 The Author(s). Published by the Royal Society of Chemistry
platforms.30–34 Their popularity stems from their exibility,
predictive power, and Bayesian nature, which enables effective
uncertainty analysis.35–37

In this study, we propose a Bayesian active learning-driven
high-throughput workow to optimize the CO2(g)-based
lithium brine soening method for producing solid lithium
carbonate, tailored for the battery industry. Using a simplied
representation of the system that only included the chemical
nature of the compounds, we were able to monitor changes in
the system and dene traceable optimization parameters. This
approach, focusing on elemental compositions rather than
engaging with complex species space and detailed reaction
mechanisms, enhances the speed and practical applicability of
our models. We believe this method is well-suited to the
demands of industrial contexts, prioritizing rapid process
adjustments to meet operational needs. In the following, the
design of this workow and our key ndings are discussed in
detail.
2. Methods

The active learning cycle, illustrated in Fig. 1, began with high
throughput experiments conducted at 66 °C. This temperature
was chosen to maximize the Li2CO3 crystallization rate.7,8,12

Increasing the temperature beyond 70 °C results in loss of NH3

and CO2 gas from the system (see Section 2.1, Experimental
procedures). Decreasing the temperature below 66 °C only
results in a slower reaction rate, and thus a longer experiment
time. Lower temperatures (25 °C and 48 °C) were explored in our
experimental setup, but it was observed that within this specic
context, these did not affect the yield of Li2CO3 (see Fig. S3 and
Table S2†). The stable Li2CO3 yield observed across various
temperatures can be attributed to the temperature-dependent
equilibria involving NH3, NH4

+, CO3
2−, HCO3

−, and H2CO3.
Temperature shis induce changes in these equilibria, which
regulate the availability of carbonate ions necessary for Li2CO3

formation, thereby maintaining an almost consistent Li2CO3

saturation concentration despite uctuations in temperature.
To effectively implement the HTE, it was necessary to

extensively monitor system progress, including tracking the
concentration of various species. However, considering the
complexity of the system of equilibria in this study, this process
required signicant resources and automation, leading to
Digital Discovery, 2024, 3, 2320–2326 | 2321
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Fig. 1 The active learning workflow for high-throughput Li-brine softening.
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increased cost and time. To mitigate these challenges, we nar-
rowed our exploration scope to focus on major elements in the
system – lithium (Li), nitrogen (N), and carbon (C) – allowing for
more efficient and swi monitoring of their concentrations
before and aer reactions. Details of the characterization
methods and related measurements are thoroughly described
in Section 2.1, Experimental procedures.

Each HTE batch consisted of 24 miniature experiments, each
with an 8 mL volume, and focused on the soening reaction
between NH4OH, CO2(g), and LiCl. The experimental procedure, as
shown in Fig. 2, involved bubbling CO2(g) into an ammonium
hydroxide solution, followed by mixing it with a LiCl solution in
different ratios to initiate crystallization. We conducted initial
measurements of C, N, and Li concentrations in the input batches
using infrared (IR) spectroscopy and ion chromatography. Subse-
quent determination of dissolved Li+ ion concentrations in the
nal solution allowed for calculating sedimented Li2CO3 and the
overall yield in each vial. Further details of the HTE procedures can
be found in Section 2.1, Experimental procedures.
Fig. 2 Block flow diagram of the high-throughput experimentation wor
and aqueous ammonium hydroxide (NH4OH).

2322 | Digital Discovery, 2024, 3, 2320–2326
A Gaussian Process Regression (GPR) model was used as the
core of the predictive analytics tool. The model, trained using all
available experimental data at each iteration, predicts lithium
yields within a dened chemical space of nitrogen, carbon, and
lithium (N–C–Li). This N–C–Li space, meshed within a range of
0 to 6 mol L−1, informed our data acquisition strategy, which
segmented the data pool into three tiers: high lithium carbonate
yield, large uncertainty in GPR predictions, and random explora-
tion. ESI Fig. S4 and Table S3† detail the experimental limitations
and the conditions viable for data acquisition.
2.1. Experimental procedures

2.1.1. Materials. All chemicals were purchased from Sigma
Aldrich (purity > 98%). DI water (>13 Mohm) was sourced from an
in-house reverse osmosis unit. CO2 gas was obtained from Praxair.

2.1.2. Instrumentation. Ion chromatography (IC) data was
recorded on a Dionex ICS-6000 equipped with a CS16-4 mM, 4 ×

250 mm column. Eluent consisted of isocratic 35 mM methane
kflow and softening process for converting LiCl to Li2CO3 using CO2(g)

© 2024 The Author(s). Published by the Royal Society of Chemistry
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sulfonic acid with a ow rate of 0.640 mL min−1. Liquid dosing
for high throughput experiments was carried out with an
Unchained Labs Junior pipette robot. Samples were mixed and
heated with an IKA ThermoShaker orbital mixer. Infrared (IR)
spectroscopy measurements were made using an MT ReactIR
probe.

2.1.3. Procedure for 8 mL vial experiments. The experi-
ments were carried out in 8 mL vials in a 24 well plate and the
data that was collected is tabled in Table S1.† Solutions were
made by mixing aqueous LiCl with a solution of NH4OH that
has been carbonated by bubbling CO2(g) into it (see below for
details on this solution). Aliquots from the NH4OH/CO2 solu-
tion were removed at various time intervals of elapsed CO2(g)

bubbling time in order to collect data at different carbonation
levels (measured as total carbon concentration). Another vari-
able that was altered was the ratio between the volume of LiCl
solution added and the volume of the NH4OH/CO2 solution
added (this effectively varies the total nitrogen concentration in
each sample). The nal variable that was altered was the Li
concentration in the LiCl solution. All three of these variables
were varied in each sample to give rise to solutions that con-
tained different concentrations of Li, C, and N (see Fig. 3).

The vials were then capped and heated to 66 °C, while mixing
vigorously in an orbital mixer. Note that heating is required to
speed up the crystallization – even though Li2CO3 solubility
does not change with temperature in this system, the vials are
still heated to complete the experiment within 24 hours. In situ
IR spectroscopy was employed to determine the maximum
temperature suitable for our experiments. An IR probe was
inserted into an uncapped solution containing 0.5 M (NH4)2CO3

and 2 M NH4OH, and the temperature of the solution was
gradually increased from 20 °C to 90 °C. The solution's
temperature was held for 5 minutes at each 10-degree interval
(i.e., 40 °C, 50 °C, etc.). At 70 °C, the IR signals for carbonate
(1395 cm−1) and ammonia (1108 cm−1) remained stable,
showing no decrease during the isothermal hold. However, at
Fig. 3 Lithium carbonate yield predictions for varying lithium brine so
predicted yield across different slices of the chemical landscape, leveragin
Each panel visualizes the yield for a set initial concentration: (a) 4.2 mol L
elements varying from 0 to 6 mol L−1. The color gradient indicates the lit
and red contours delineate areas of standard deviation within the GPR p

© 2024 The Author(s). Published by the Royal Society of Chemistry
80 °C, a decrease in the intensities of these peaks was observed,
indicating the loss of ammonia and CO2(g). Consequently, the
maximum temperature for the experiments was set slightly
below 70 °C, at 66 °C, to prevent any loss of CO2(g) or ammonia
from the system.

Aer 24 hours of mixing at 66 °C, a 1 mL aliquot was taken
from each sample, oen presenting as a slurry of Li2CO3, and
ltered through a syringe lter. Cooling during ltration did not
impact our results, as Li2CO3 solubility was observed to be
stable across the tested temperatures in our experimental
conditions, as evidenced by Fig. S3 and Table S2.† The ltered
solution was then diluted and analyzed for lithium concentra-
tion using ion chromatography.

2.1.4. Preparation of the NH4OH/CO2 solutions and IR
measurements. The NH4OH/CO2 solution was prepared as
follows: a 50 mL solution of 12 M NH4OH, taken directly from
the stock bottle provided by Sigma, was added to a stirred
reactor using a Rushton turbine impeller to enhance CO2(g)

dissolution. CO2(g) was bubbled into this solution through
a Tygon tube at a rate of 100 mL min−1. The solution temper-
ature was maintained at 25 °C with a stirring rate of 500 rpm.
Every 15 minutes, 100 mL aliquots were taken from the reactor
and diluted into a tube containing 2.5 mL of 1 M NaOH and
7.4 mL DI water (totaling 10 mL, 100× dilution). This dilution
ensured that all dissolved carbon converted to carbonate,
allowing accurate measurement by the IR probe. The total
carbon concentration in each 10 mL diluted sample was
determined by ReactIR, specically using the peak height of the
carbonate band at approximately 1395 cm−1 (refer to Fig. S2†)
via a calibration curve created with K2CO3. The carbonate
concentration in the diluted sample was then multiplied by 100
to calculate the total carbon concentration in the original
NH4OH/CO2 solution at the time of aliquot sampling. This data
is visually represented in Fig. S1.† Aer 120 minutes of CO2(g)

bubbling, the C to N ratio stabilized at 1 : 2 (6 M C and 12 M N),
indicating stoichiometric reaction between ammonia and
ftening conditions using the GPR model. This figure showcases the
g both historic and newly acquired data from the active learning cycles.
−1 lithium, (b) 6 mol L−1 nitrogen, and (c) 2.5 mol L−1 carbon, with other
hium yield, while black contours emphasize differences in yield regions
redictions, thereby representing the model's uncertainty.

Digital Discovery, 2024, 3, 2320–2326 | 2323
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CO2(g), with no further addition of CO2(g) required beyond this
point.

For high throughput experiments, the above procedure was
repeated, except aliquots were instead removed at various other
time intervals (other than every 15 minutes) based on what the
predicted total carbon concentration would be at that time (see
Fig. S1†). The total C concentration in these aliquots was
extrapolated from the data shown in Fig. S1.†

3. Results and discussions

The AI-enhanced HTE approach facilitated a comprehensive
exploration of the lithium brine soening process, effectively
predicting lithium carbonate yields within the initial N–C–Li
parameter space, as depicted in Fig. S5.† Remarkably, just two
iterations of AI-driven HTE cycles were sufficient to identify yield
values of 83% surpassing the 65% yield reported from traditional
lab techniques. This yield is 10% higher than the highest yield
reported by Y. Sun et al. for Li2CO3 production using CO2(g).38

Notably, the optimized 83% Li2CO3 yield achieved in this study not
only matches or exceeds yields obtained using combinations of
CO2(g) with sodium- or potassium-hydroxide but also, does so at 20
to 30 degrees Celsius lower.7,39–41 This lower temperature approach
not only reduces energy consumption but also attains yields that
are either higher or comparable, while efficiently removing excess
sodium and potassium impurities from the material matrix and
further minimizing the carbon footprint.

Slices of the explored chemical space (Fig. 3) highlight
conditions for maximizing lithium carbonate yields as pre-
dicted by our AI-enhanced HTE approach. Despite the potential
for even higher yields suggested by active learning, experi-
mental constraints, such as pipe blockages and sedimentation
in the vials due to high lithium carbonate concentrations,
limited further exploration. However, these observations hinted
at further potential for improvement.

As illustrated in Fig. 3, our active learning model underscores
the signicance of high initial lithium concentrations for
achieving superior yields. It suggests that optimal lithium
concentrations are slightly below the stoichiometric ratio of
lithium to carbon in Li2CO3, ideally at 4.2 molar for initial lithium
and approximately 2.5 molar for initial carbon, suggesting an
excess of carbon. In addition, Fig. 3 shows that achieving high
yields requires nitrogen concentrations to signicantly exceed
stoichiometric expectations for CO2(g) capture, contrary to the
initial chemical intuition of equivalent nitrogen and carbon
concentrations. Interestingly, higher initial carbon concentrations
reduced yield, defying the expectation of increased yield from
higher carbonate concentration as per Le Chatelier's principle.
This reduction in yield is likely due to a drop in pH following CO2(g)

dissolution, where each mole of carbon releases two moles of
protons during carbonic acid neutralization.

To evaluate the performance of our Gaussian process regres-
sion models, we monitored the uncertainty of predictions across
iterations. The evolving landscape of the predicted yield space is
presented in Fig. S6.† A notable decrease in prediction uncertainty
aer the rst active learning cycle is evident in Fig. S6,† under-
scoring the method's ability to rapidly identify optimal initial
2324 | Digital Discovery, 2024, 3, 2320–2326
reaction conditions in the space of N–C–Li. The second iteration
did not show a signicant reduction in prediction uncertainty,
indicating that this cycle focused more on rening and validating
the model's initial predictions. This is corroborated by trends in
Fig. S6,† where the area with low prediction uncertainty expands,
but the yield landscape remains relatively unchanged. Further-
more, we detail the contribution of each tier of our data acquisition
strategy in enhancingmodel performance and information gain in
Section 6 of the ESI (Fig. S8).† Section 7 of the ESI† explores the
performance comparison between the GPR model and other
commonly used models across various iterations of our study, as
illustrated in Fig. S9 and S10.†
4. Conclusions

In summary, this study demonstrates that active learning can
accelerate the optimization of chemical reactions occurring in
complex systems of equilibria. Reducing the chemical space to
key elements has proven instrumental in enabling swi and
effective system optimization. By simplifying the chemical
space, we were able to dene and track reaction parameters,
which led to the development of our AI-enhanced HTE work-
ow. Aligned with the established performance of GPR models
reported in materials optimization processes,20,31–34,37 our active
learning workow also beneted from this powerful method-
ology. This innovative method facilitated efficient exploration
and optimization of the chemical space, culminating in lithium
carbonate yields exceeding 83% in just a single iteration of our
AI-boosted HTE cycle. This yield marks a substantial improve-
ment over existing yields reported in the literature for Li2CO3

production from LiCl brines using NH4OH and CO2(g).7,38

Looking ahead, the methodologies and insights from this study
hold wide applicability, extending to various reactions and
elds within material science. Future endeavors will focus on
further rening these AI-driven techniques, applying them to
other complex chemical processes, and enhancing their scal-
ability and adaptability to meet diverse industrial requirements.
Data availability

The experimental data supporting this article are detailed in
Table S1 of the ESI,† which also includes additional informa-
tion on experimental procedures and complementary analyses.
All experimental data, AI-generated experiment suggestions,
executable Python scripts, and resources necessary for repro-
ducing the paper's gures and analyses are hosted on our
dedicated GitHub repository and archived on Zenodo. For full
access to these materials and more details, please visit our
GitHub Repository at https://github.com/shmouses/AI-enabled-
HTE-Li-Production and the Zenodo Archive with DOI: https://
doi.org/10.5281/zenodo.11661727.
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34 V. L. Deringer, A. P. Bartók, N. Bernstein, D. M. Wilkins,
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