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Over the past few decades, perovskite solar cells (PSCs) have attracted great research attention attributed to
their promising future as alternative energy sources. Even with exceptionally high power conversion
efficiency (PCE) up to 27.3%, the chemical instability of perovskite precursors, induced by the undesirable
transition of [Pblg]*~ octahedron and the high volatility of organic cations, is a big obstacle in achieving
high efficiency and superior long-term stability of PSCs, thus restricting their industrial production and
practical application. Herein, the stability of perovskite precursor solution was modulated by introducing
a multifunctional passivator: ethyl-4-amino-2-mercapto-5-pyrimidinecarboxylate (AMPM). AMPM with
electron-donating and electron-accepting groups can interact with perovskite precursor through
coordination and hydrogen bonds. Thus, it effectively dissociates face- and edge-shared [Pblgl*~
octahedral aggregates, enhancing precursor colloidal dispersion, improving precursor stability and
driving a reorganization into corner-shared [Pblg]*~. Additionally, AMPM preferentially increases the
relative abundance of higher-Miller-index (220) and (310) planes while preserving the predominance of
the primary (110) facet, thereby reducing perovskite defect state density and improving charge
extraction. As a result, compared with the control carbon-based PSCs (C-PSCs), the champion PCE of
the C-PSCs was increased up to 18.48% via AMPM treatment in perovskite bulk films. The PCE of the
AMPM -treated C-PSCs retained 90% of the initial value after storage at 30-40% relative humidity for 50
days, compared with that of less than 47% for the original device. This research provides a novel
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1. Introduction

Organic-inorganic lead halide hybrid perovskite solar cells
(PSCs) have garnered unprecedented attention due to their
exceptional optoelectronic properties, including high absorp-
tion coefficients,"* tunable bandgaps,** high carrier mobility,>*
and bipolar charge transport.*” The power conversion efficiency
(PCE) of PSCs has dramatically improved from 3.8%?® in 2009 to
the current 27.3%,° pushing them to the forefront of competi-
tive and promising photovoltaic technologies. Perovskite films
are generally prepared by solution processing, in which
multiple components such as halides (Pbl,, MAI, CsI and FAI)
are dissolved in a mixed solution to form a precursor solution.
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the properties of the precursor materials via colloidal chemistry.

The as-formed precursor consists of colloidal particles self-
assembled from face-/edge-/corner-sharing [Pbls]*~ octahedra
and organic/inorganic cations.'® Previous reports showed that
dimethylformamide (DMF) or dimethylsulfoxide (DMSO)
solvent can form an intermediate adduct with the colloidal
particles to reach chemical equilibrium and play a key role in
subsequent perovskite crystallization.'™** Crucially, this solute—
solvent equilibrium remains reversible, rendering the system
inherently labile.” This instability, driven by the high volatility
of organic cations and the transformation of [PbIg]*~
octahedral connectivity, favors the formation of a perovskite
film with a high defect state density.**'® Moreover, DMF
hydrolysis yielding dimethylamine can induce methylamine
cation (MA") deprotonation, causing the precursor composition
to deviate further from the expected values.'” Thus, the char-
acteristics of the perovskite precursor inevitably compromise
the performance and stability of PSCs. In order to improve the
quality of perovskite films, multifunctional passivators are
commonly added into the perovskite precursor to passivate film
defects in the bulk. The effect of passivators interacting with
perovskite film is often studied after crystallization, while how
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the passivators cooperate with the perovskite precursor solution
is rarely reported. Therefore, there is an urgent need to under-
stand not only how to passivate the perovskite film, but also
how the passivator affects the stability of the precursor solution.

In bulk passivation, various additive engineering is adopted
to manipulate the precursor solution."®?® Additives containing
electron-donating or electron-accepting functional groups can
interact with the uncoordinated ions in perovskites through
coordination bonds, electrostatic interactions, or hydrogen
bonds.*"*¢ These interactions are beneficial for regulating the
coordination chemistry of the perovskite precursor and thus
control the crystallization pathways.?”*® For instance, Gou et al.
used piperazine-2-carboxylic acid dihydrochloride additives to
inhibit MA" deprotonation by forming strong two-point
hydrogen bonds, thereby extending the shelf life of the perov-
skite precursor solution.”” Hu et al. also employed reductive
additives to inhibit the degradation reaction between methyl-
amine (MA) and formamidine (FA) by consuming iodine (I,) by-
products and suppressing the deprotonation of MA", stabilizing
the perovskite precursor solution.* Yin et al. utilized synergistic
H'/I” oxidation coupled with reductive peroxyacetic acid,
achieving rapid equilibrium in MA/FA assembly for FA-
dominant perovskites with exceptional solution stability.**
Tian et al.** and Jeon et al.** applied colloidal state control
through ionic bond strength modulation, concurrently sup-
pressing ink degradation and enabling preferential growth of
macroscopic crystals. Wang et al. developed a MA-based gel
precursor in an acetonitrile dispersion system.** Owing to the
highly volatile nature of the acetonitrile-based gel perovskite
precursor solution and its abundant high-valent PbI,>™" coor-
dination compounds, the uniformity and quality of perovskite
films were enhanced. Despite these advances, the mechanistic
links between passivation molecule interactions in perovskite
precursor solutions and their subsequent regulation of colloidal
assembly, precursor stabilization, and defect-minimized crys-
tallization dynamics are not fully understood.

In this work, we propose a feasible strategy to modulate
a perovskite precursor and regulate its crystallization growth
using a multifunctional passivator: ethyl-4-amino-2-mercapto-
5-pyrimidinecarboxylate (AMPM). To the best of our knowl-
edge, this is the first time that AMPM with functional groups of
amino (-NH,), mercapto (-SH), pyrimidine N, and ester groups
has been used to adjust a perovskite precursor solution. The
multifunctional groups of AMPM efficiently attach to the face-
and edge-shared [Pbls]*~ octahedra through coordination and
hydrogen bonds, thereby enhancing the dispersion and stability
of the precursor and forming the more stable corner-sharing
[Pbls]*~ octahedra. Meanwhile, AMPM optimized crystal
orientations of perovskites during growth, thereby reducing
defect density and enhancing the charge transport and collec-
tion properties of perovskite films. As a result, the champion
PCE of AMPM-modified carbon-based PSCs (C-PSCs) was
increased to 18.48% using poly(3-hexylthiophene) (P3HT) hole
transport layer (HTL) and a tea polyphenol-functionalized
liquid metal Ga (TP@Ga)-modified carbon electrode. The
unencapsulated devices retained 90% initial PCE after 50-day
ambient storage (30-40% RH), demonstrating exceptional
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operational stability. This study establishes molecularly engi-
neered synchronization of precursor colloidal stability and
crystallization kinetics as a scalable manufacturing platform,
addressing reproducibility limitations in perovskite photovol-
taics. The methodology shows particular promise for industrial
ink formulation enabling high-throughput PSC production.

2. Experiment section
2.1 Fabrication of carbon-based perovskite solar cells

Perovskite precursor solutions were formulated as per estab-
lished methodology by co-dissolving methylammonium iodide
(MAI, 159 mg, >99.5%, Xi'an p-OLED) and lead iodide (Pbl,,
461 mg, >99.99%, Xi'an p-OLED) in a DMSO/DMF co-solvent
system (0.07:0.64 mL, Macklin/Aladdin) under continuous
agitation (35 °C, overnight).*® For PSC fabrication, a multi-layer
nanocrystalline TiO, film was formed on cleaned FTO glass to
serve as the electron transport layer (ETL). The perovskite
precursor solution was then spin-coated onto the ETL at
4000 rpm for 20 seconds, with ether rapidly added as an anti-
solvent. The film was subsequently annealed at 95 °C for 10
minutes to enhance crystallization. For passivated PSCs, AMPM
was incorporated into the precursor solution (0.711 mL) at
concentrations between 0 and 2 mg. A 10 mg L~ P3HT solution
in isopropanol (IPA) was spin-coated at 3000 rpm for 30 seconds
and annealed at 100 °C for 5 minutes to form the HTL. The
TP@Ga-modified carbon electrode was fabricated according to
our previous method.*® Finally, commercial carbon paste was
doctor bladed onto the perovskite surface and heated at 100 °C
to complete the device. The solar cell's active area was 0.12 cm?>.

2.2 Characterizations

Computational modeling employed Gaussian 09 and Gauss-
View 5.0 for molecular geometry optimization and electrostatic
potential mapping. Solution-phase colloidal distributions were
quantified via dynamic light scattering (DLS, nano laser
analyzer). Surface topography was investigated by field-
emission scanning electron microscopy (SEM) (Verios G4),
while nanoscale electrical properties including contact poten-
tial difference were probed using atomic force microscopy
(AFM)/Kelvin probe force microscopy (KPFM) (Bruker Dimen-
sion platforms). Electronic structure characterization combined
ultraviolet photoemission spectroscopy (UPS) and X-ray photo-
electron spectroscopy (XPS) (Axis Supra spectrometer) with UV-
visible absorption spectroscopy (Hitachi U-3900 h). Photo-
physical properties were assessed through steady-state/time-
resolved photoluminescence (PL/TRPL, PicoQuant FluoTime
300). Molecular interactions were verified by FTIR spectroscopy
(Bruker Tensor II, 4000-400 cm ') and proton nuclear magnetic
resonance ("H NMR) (500 MHz, DMSO-d, solvent). Electro-
chemical properties including charge transfer kinetics were
evaluated via electrochemical impedance spectroscopy (EIS)
and Mott-Schottky (M-S) analysis (CHI 660 E, 1.0-1.2 V bias, 1
kHz). Trap density quantification utilized space charge limited
current (SCLC) measurements in electron-only architectures
(FTO/TiO,/Perovskite/PCBM/Carbon). Photovoltaic
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performance was benchmarked under AM 1.5 G illumination
(Newport Class AAA solar simulator, 100 mW cm > calibrated),
recording the current density-voltage (J-V) curves (Keithley
2401) and stabilized power output at maximum power point.
EQE spectra (300-800 nm, unbiased) were acquired using an
Enli Tech QE system, with hydrophobicity characterized by
contact angle goniometry (Kriiss DSA25).

3. Results and discussion

The crystalline quality of perovskite films is critically dependent
on the colloidal state of the precursor solution, such as its
dispersion and stability, and the structural integrity of the
fundamental [PbI¢]* .3 Especially when a passivator is added
into the perovskite precursor solution, it would largely affect its
colloidal chemistry. To exert precise control over colloidal
assembly and enhance the stability of [Pblg]'” octahedra,
multifunctional molecule AMPM was introduced into the
perovskite precursor. The molecular structure and electrostatic
potential (ESP) distribution of AMPM are shown in Fig. 1a. The
negative ESP centers around the -NH, and ester (-O-) groups,
while the positive ESP centers on the pyrimidine N, -SH, and
carbonyl (-C=0) groups. These characteristics enabled AMPM
to interact with MAI and Pbl, precursors. They also show that
AMPM has the ability to mitigate octahedral deformation,
passivate defects and control crystal growth.

DLS was conducted to explore the effect of AMPM on the
colloidal chemistry in perovskite precursor solution. As shown
in Fig. 1b, the colloidal size reduced with increasing addition of
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AMPM. The average colloidal sizes of perovskite precursor
solutions of 0, 0.5, 1, 1.5 and 2 mg were 201, 180, 143, 105 and
76 nm, respectively (seen in Table S1). The reduction in
colloidal size is attributed to the interactions of AMPM with
perovskite precursors, which can effectively disrupt the photo-
inactive face- and edge-sharing [Pbls]*~ aggregates and promote
the formation of thermodynamically favored corner-sharing
[PbIg]*” octahedra.*** This led to the enhancement in the di-
spersibility of the precursor solution. While reduced colloidal
size promotes homogeneous nucleation and enlarges final
grains through diminished nucleation density,**** excessive
size reduction carries inherent risks. Excessively high nuclei
density from ultra-small colloids triggers competitive growth,
destabilizes colloidal systems, and impedes Ostwald ripening,
ultimately compromising film quality.** Meanwhile, the storage
stability of the perovskite precursor solution with and without
AMPM additive was also investigated, as shown in Fig. S1a-f.
After 12 h of aging, the colloidal size of pure perovskite
precursor solution and 0.5, 1, 1.5 and 2 mg AMPM-containing
perovskite precursor solutions increased to 456, 358, 299, 240
and 156 nm, respectively. Limited variation in colloidal size
during 12 h of aging indicates the interactions between AMPM
and perovskite inhibit larger aggregation, consequently
enhancing precursor solution shelf life.

In addition to colloidal size measurement, the stability of the
precursor affected by AMPM was studied by UV-visible spec-
troscopy. The effect of AMPM on the aging of perovskite
precursor solution is shown in Fig. 1c. The pure perovskite
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Fig.1 The molecular structure and ESP of AMPM (a). The colloidal size distributions of control and 0.5-2 mg AMPM-treated perovskite precursor
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precursor solution showed marked absorbance increase after
12 h of aging. However, AMPM addition suppressed this change
in air at room temperature, in a glove box at 75 °C, and in a glove
box at room temperature. A similar stabilizing effect was
observed for the UV-visible spectra of Pbl, and MAI in Fig. S1g
and h. Compared with pristine PbI, solution, the Pbl, absorp-
tion edge for perovskite precursor solutions containing AMPM
showed minimal changes after 12 h of aging. The adsorption
peak of MAI solution with AMPM also showed a reduced
adsorption during 12 h of aging relative to the bare MAI solu-
tion. This suggests that AMPM established effective binding
with MAI and Pbl,, stabilizing perovskite precursor solution.*
The fresh and aged perovskite precursor solution images after
12 h are shown as insets in Fig. 1c. The color of pristine
perovskite solution after aging for 12 h changed from trans-
parent to light yellow. When AMPM was added into perovskite
solution, the color immediately turned dark yellow, suggesting
that AMPM interacted with perovskite. After 12 h of aging, the
dark yellow color remained stable without further change,
further indicating that the addition of AMPM is beneficial for
stabilizing perovskite precursor solution. Similar stabilization
is visually confirmed for PbI, and the MAI solutions in Fig. S1h
and S1i. These results indicated that AMPM effectively
suppresses degradation pathways by forming hydrogen bonds
between its -SH, pyrimidine N, and ester groups and MA",
thereby inhibiting deprotonation and subsequent byproduct
formation. This contributes to maintaining a stoichiometric
balance in the perovskite precursor solution. Meanwhile,
AMPM mitigates the reaction between DMSO and I by sup-
pressing proton release, thereby significantly extending the
shelf life of the solution. Additionally, pyrimidine N, -NH, and -
SH groups in AMPM coordinated with uncoordinated Pb>". Its
coordination and hydrogen bonds remove strained non-corner
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linkages, simultaneously controlling colloidal assembly
towards the desired corner-sharing [Pbls]*~ octahedra and
significantly enhancing the stability of perovskite precursor
through multifaceted interactions (Fig. 1d). This dual action
would establish a more favorable starting point for high-quality
perovskite crystallization. A summary table is provided to
compare key performance parameters between AMPM and
other passivators, including PCE, operational stability, and
defect density. As shown in Table S2, AMPM significantly
enhances the stability of the perovskite precursor solution
compared to other reductive passivators.

"H NMR spectroscopy was employed to elucidate the
molecular interactions between the perovskite precursors and
AMPM. As depicted in Fig. 2a, when AMPM is mixed with Pbl,,
the proton signals of -NH, (7.86 and 8.02 ppm, label yellow
color), pyrimidine N (8.48 ppm, label purple color) and -SH
(12.64 ppm, label green color) in AMPM shifted significantly to
8.25, 8.37, 8.80, and 13.17 ppm. This observed shift indicated an
interaction between the pyrimidine N, -NH, and -SH of AMPM
and uncoordinated Pb*" through coordination bonds. The
proton signals of ~-CH; and -CH, groups in the methyl ethyl
ester (label orange color) of AMPM remained unchanged. After
incorporating AMPM into MAI (Fig. 2b), the chemical shift of
the MA cation (-NH;") moved downfield from 7.41 to 7.49 ppm.
The chemical shift for -SH shifted from 12.64 ppm to
12.63 ppm, that for -CH; and -CH, in the methyl ethyl ester
moved from 1.26 and 4.23 ppm to 1.20 and 4.17 ppm, and that
for pyrimidine N changed from 8.48 ppm to 8.45 ppm. This
indicated that -SH, pyrimidine N and ester groups can interact
with MA" through hydrogen bonds, decreasing in the dissipa-
tion of MA".* The absence of chemical shift alterations for -
NH, implied the predominant interaction with Pb>",
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(c), 1 3d (d), and N 1s (e) of original and AMPM-passivated perovskite fil
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During perovskite film formation, AMPM remained in the
perovskite film to passivate its defects rather than being
removed by volatile solvent. FTIR and XPS characterizations
were conducted to elucidate the interaction between AMPM and
perovskite thin film. The FTIR spectra of AMPM and perovskite
without and with AMPM treatment are shown in Fig. S2a. The
AMPM spectrum contains characteristic stretching vibrational
peaks of -N-H (3367 cm™'), -SH (2847 cm '), C=0
(1707 em™ %), and C-O (1020 cm ). For the perovskite film with
AMPM treatment, these peaks migrated to 3445 (-N-H), 2857 (-
SH), and 1013 (C-O) cm ™', and the C=N peak of perovskite
shifted from 1564 cm ™" to 1625 cm ™', indicating interactions
between AMPM and perovskite.

As shown in Fig. 2c¢, the Pb 4f XPS spectrum has two peaks at
138.00 eV and 142.89 eV, assigned to Pb 4fs, and Pb 4f;,,
respectively. After AMPM addition, these peaks shifted to 138.22
and 143.00 eV, suggesting that AMPM passivated defects and
the formed coordination bonds between AMPM and uncoordi-
nated Pb*".** In Fig. 2d, the I 3d peaks in the XPS spectrum
(619.00 and 630.49 eV) also shifted toward higher binding
energy compared with control film (618.40 and 629.89 eV). This
shift was attributed to the interaction of AMPM with MA"
through hydrogen bonds, thereby inhibiting negative charge
defects and resulting in a decreased electron density. For N 1s
spectra in Fig. 2e, the signal peak at 401.91 eV shifted to higher
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binding energy (402.09 eV) after AMPM introduction, implying
that AMPM interacted with uncoordinated Pb** through coor-
dination bonds. These interactions immobilize MA" and metal
ions, thereby suppressing ion migration and stabilizing the
perovskite crystal structure. Moreover, the emergence of peaks
in N 1s (pyrimidine nitrogen), C 1s (C=0), O 1s, and S 2p XPS
spectra confirmed the retention of AMPM in the perovskite film
(Fig. S2b-d).

AMPM addition in perovskite precursor solution affected the
perovskite thin-film crystal quality. The effect of AMPM on thin-
film morphology was investigated using SEM and AFM. As
shown in Fig. 3a, the original perovskite film presented a non-
uniform, rough texture with distinct grain boundaries. The
grain size increased with the AMPM amount up to 1 mg but
decreased at 2 mg as shown in Fig. 3b and Fig. S3a-c. The 1 mg
AMPM-treated perovskite film displayed a uniform and dense
structure with the largest average grain size (220 nm). The
average grain size distributions are shown in Fig. S4a-f. This is
attributed to AMPM effectively modulating the perovskite
precursor, thereby promoting the homogeneous nucleation and
grain growth of perovskite crystals. Meanwhile, the 1 mg
AMPM:-treated film exhibited a lower root mean square (RMS)
roughness (28.9 nm vs. 20.2 nm) as shown in Fig. 3c and d.

As shown in Fig. 3e and f, the perovskite film treated with
1 mg AMPM exhibited a lower contact potential difference

Control

With. AMPM

W/O AMPM

05 1.0

1.0 . X
Qxy (A)

Fig. 3 Top-view SEM images of control perovskite film (a) and perovskite film with 1 mg AMPM treatment (b). AFM and KPFM images of the
control (c and e) and target perovskite films (d and f). XRD patterns of control and 0.5-2 mg AMPM-treated perovskite films (g). GIWAX patterns

for control (h) and 1 mg AMPM-treated (i) perovskite films.
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(CPD) (0.402 V) compared to the control film (0.572 V). The
lower CPD is related to higher work function and upshift of the
Fermi level, boosting interfacial charge extraction and carrier
transport.***#

XRD and GIWAXS were systematically performed to explore
the influence of AMPM on the perovskite crystallization and
crystal orientation. As shown in Fig. 3g and Table S3, the peak
intensities of (110), (220) and (310) crystal planes were
enhanced after 0.5 mg, 1 mg and 1.5 mg AMPM treatment. The
full width at half maximum (FWHM) values of the (110) peak
exhibited a significant decrease for these AMPM-treated films.
This indicated that AMPM treatment enhanced the crystallinity,
with the best improvement observed at 1 mg of AMPM.*
However, the perovskite film treated with 2 mg AMPM displayed
diminished peak intensity and an increased FWHM for the
(110) crystal plane. This implied that excessive addition of
AMPM to the precursor solution would negatively affect the
perovskite crystallization process. The preferential crystal
orientation can be quantitatively assessed from the intensity
ratios of different crystal planes.*® The effect of AMPM on crystal
orientation was investigated by comparing the change in
intensity ratios of (110)/(220), (110)/(310) and (220)/(310). Those
ratios increased for AMPM-treated perovskite films (Table S3).
Notably, while the (110) plane remained dominant, the film
treated with 1 mg AMPM exhibited the smallest relative changes
in the (110)/(220) and (110)/(310) ratios, alongside a relatively
small change in the (220)/(310) ratio. This indicated that AMPM
selectively enhances the relative proportion of higher-Miller-
index (220) and (310) planes while maintaining the domi-
nance of the primary (110) facet, confirming facet-specific
crystallization modulation as opposed to generalized
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crystallinity enhancement. Higher-Miller-index crystal planes
exhibit intrinsic self-passivation capability by saturating unco-
ordinated surface atoms, effectively eliminating gap states from
dangling bonds and consequently suppressing defect formation
and nonradiative recombination.*

As shown in Fig. 3h and i, compared with control film, the
AMPM-treated film exhibited a clear and strong diffraction ring,
corresponding to the (110) crystal plane. Meanwhile, the
intensities of diffraction rings of the (220) and (310) crystal
planes were enhanced. The enhancement of these crystal plane
diffraction rings suggests that the crystallinity and preferred
growth of the crystal planes have been regulated.®»** This
further demonstrated that AMPM can lead to an apparent
preferable growth along (110), (220) and (310). These GIWAXS
findings provided reliable corroboration of the XRD results,
demonstrating the function of AMPM in manipulating and
enhancing the crystalline growth and orientation.

The improvement via AMPM treatment of the perovskite film
quality inevitably exerts an impact on the photoelectric prop-
erties. As shown in Fig. 4a, the perovskite films both with and
without AMPM exhibited similar adsorption edges. After AMPM
treatment, the adsorption of the perovskite film was improved,
which was attributed to the increased crystallinity and reduced
defect state density.** Accordingly, the intensity of PL was
significantly enhanced after AMPM treatment, compared with
the pristine perovskite film (Fig. 4b). This suggested that AMPM
addition led to fewer defects in the perovskite film. The TRPL
spectra are provided in Fig. 4c to quantify the improvement in
the perovskite film. The AMPM-treated perovskite film showed
a much longer carrier lifetime (123.54 ns), compared with
control film (44.13 ns) (Table S4). The longer lifetime indicated
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that the inhibition of non-radiative recombination was signifi-
cantly suppressed and the charge extraction kinetics at inter-
faces was enhanced.>*

Moreover, electronic property of perovskite films was studied
by UPS measurement, and the results are provided in Fig. 4d.
The secondary electron cutoff and valence band region were
analyzed to determine the work function (WF, calculated as WF
= 21.22 — E.uorr) and valence band maximum (VBM) position
relative to the Fermi level (Eg).>® The control film exhibited a WF
of 4.37 eV and a VBM of —5.78 eV. After AMPM treatment, the
WF decreased to 4.34 eV, while the VBM shifted upwards to
—5.59 eV (Fig. 4e). The band gap of perovskite was calculated by
a Tauc plot, and the results are shown in Fig. S5. Compared with
pristine perovskite film (A¢ = 0.25 eV), enhanced upward band
bending (A¢ = 0.28 eV) at the perovskite/carbon interface
originated from the energy offset (Au) between the VBM of
AMPM-treated perovskite film and WF of the carbon electrode.
The higher Ag value suggested that AMPM-modified perovskite
film suppressed interfacial electron back-transfer to the carbon
electrode while facilitating hole extraction, thereby optimizing
energy level alignment.®***® This is consistent with KPFM
results. By optimizing energy levels and establishing a graded
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energy structure, AMPM-treated perovskite film exhibited lower
CPD. This reduced the electronic barrier and enhanced inter-
facial electron extraction, thereby improving carrier transport.

HTL-free C-PSCs with FTO/c-TiO,/m-TiO,/MAPbI;/Carbon
structure were fabricated to evaluate AMPM's effect on device
photovoltaic performance (Fig. 5a). Fig. 5b shows the J-V curves
of the devices. The control devices showed a champion PCE of
12.44%. The AMPM-treated devices yielded a champion PCE of
16.18%. The detailed photovoltaic parameters are summarized
in Table S5. In order to further elevate device efficiency, P3BHT
was added as the HTL, and the carbon electrode was modified
by using TP@Ga. As shown in Fig. S6, the maximum PCE of C-
PSCs was further increased to 18.48% using the P3HT HTL and
carbon electrode modified by TP@Ga. Fig. 5c¢ shows the
resulting changes of PCE, FF, Jsc, and Voe. 0.5-1.5 mg AMPM-
modified devices exhibited an enhancement of both FF and
Voc. This can be attributed to passivation of defects, excellent
charge transfer and better energy level alignment. Moreover, the
AMPM-modified devices exhibited superior reproducibility,
particularly for 1 mg addition of AMPM.

EIS was conducted to investigate the charge transport and
carrier recombination properties. As illustrated in Fig. 5d, the
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charge recombination resistance (R..) of the device treated with
AMPM increased from 1870 Q to 7527 Q, and the series resis-
tance (Rs) was reduced from 11.47 Q to 6.19 Q, compared to the
control device, indicating suppressed carrier recombination in
C-PSCs. The charge transport properties were further investi-
gated by the dark j~V and M-S curves. The reduction of dark
current of devices treated by AMPM indicated decreased elec-
trical leakage channels (Fig. 5e). As shown in Fig. 5f, AMPM
treatment increased the built-in potential (V4;) from 0.73 V to
0.82 V. The elevated V}; enhances the driving force for charge
separation within a device.” To quantitatively estimate the
effect of AMPM on trap density of the perovskite film, SCLC
measurement was conducted and the results are shown in
Fig. 5g. The AMPM-modified device demonstrated a decreased
trap-filled limit voltage (V1) of 0.938 V and a diminished trap
density (N;) of 1.27 x 10'® cm™>, whereas the control device
presented a Vrp of 1.011 V and an N, of 1.38 x 10'® em 2,
indicating that the AMPM treatment effectively reduced the
defect state density of perovskite. Furthermore, the EQE results
in Fig. S7 demonstrated that AMPM-passivated devices had
a stronger spectral response between 480 and 800 nm. This
suggests that passivated devices have faster charge transfer.****
The spectral response of device is further enhanced by using
a P3HT HTL and a carbon electrode modified by TP@Ga. The
Jsc derived from the EQE spectra indicated that AMPM-treated
C-PSCs exhibited enhanced Jgc.

Given the importance of stability in practical applications of
PSCs, the stability of AMPM-modified C-PSCs was studied. As
shown in Fig. 5h, the passivated C-PSCs exhibited a steady-state
current density of around 18.00 mA cm ™2 and a steady-state PCE
of 14.04% at 0.785 V, whereas the control devices had values of
11.48 mA cm > and 10.73% at 0.710 V. For the long-term
stability results in Fig. 5i, after 50 days of storage at room
temperature (30-40% relative humidity), AMPM-passivated C-
PSCs retained 90% of their initial PCE, while the control C-
PSCs retained only 47% As shown in Fig. S8, Pbl, peak inten-
sity of control film increased significantly after 50 days. With
AMPM treatment, the long-term stability of films was slightly
improved and the Pbl, diffraction peaks were hardly detected
for the AMPM-modified film after 50 days. This confirmed that
the AMPM-mediated defect suppression substantially extends
C-PSC operational lifetimes under environmental stressors.
Moreover, the water contact angle of AMPM-modified film is
82.2°, greater than that of pristine film (56.2°) (Fig. 5i).

4. Conclusion

In summary, a feasible strategy was proposed to stabilize
perovskite precursor and regulate its crystallization growth
using a multifunctional passivator, AMPM. AMPM with func-
tional groups of NH,, -SH, ester and pyrimidine N can interact
with precursors MAI and Pbl, through coordination and
hydrogen bonds, respectively. The results of DLS and UV-visible
spectroscopy of perovskite precursor solution demonstrated
that these chemical interactions effectively dissociate face- and
edge-shared [Pblg]'~ octahedral aggregates, enhancing
precursor colloidal dispersion, improving precursor stability
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and driving the reorganization into corner-shared [Pbl¢]* . This
restructuring significantly enhanced the dispersion and
stability of the precursor solution. Moreover, XRD and GIWAXS
results revealed that AMPM preferentially increased the relative
abundance of higher-Miller-index (220) and (310) planes while
preserving the predominance of the primary (110) facet, thereby
reducing perovskite defect state density and improving charge
extraction. PL and TRPL further confirm that AMPM signifi-
cantly reduced defect state density and improved interface hole
transport. Consequently, the PCE of AMPM-treated C-PSCs
increased markedly from 12.44% to 16.18%. The champion
PCE of C-PSCs was further increased to 18.48% using a P3HT
HTL and a TP@Ga-modified carbon electrode. After 50 days of
storage at room temperature and a relative humidity of 30-40%,
the long-term stability of AMPM-treated C-PSCs remained at
90% of the initial PCE. This study successfully establishes
a multi-site anchoring passivator as a powerful and versatile
approach for concurrently stabilizing perovskite precursor
solution and regulating crystallization dynamics. This dual-
action strategy paves the way for the fabrication of high-
performance, solution-processed perovskite optoelectronic
devices with enhanced reproducibility and stability.
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