Issue 25, 2020

Bronze-type vanadium dioxide holey nanobelts as high performing cathode material for aqueous aluminium-ion batteries

Abstract

Aqueous rechargeable aluminium-ion batteries (AIBs) are promising post lithium-ion battery candidates. However, the capacity and cycling stability are limited by the cathode materials, hindering their widespread application. Herein, bronze-type vanadium dioxide (VO2–B) holey nanobelts have been designed as the cathode material to improve both the capacity and cycling stability for high-performance aqueous AIBs. Benefiting from the unique shear structure and two-dimensional holey nanobelt morphology, the VO2–B electrode delivers a superior specific capacity of up to 234 mA h g−1 at 150 mA g−1 and exhibits a high capacity retention of 77.2% over 1000 cycles at 1 A g−1, which are among the best cathode performances reported for aqueous AIBs. Moreover, a combination of electro-kinetic analysis and ex situ structural evolution characterization experiments reveals the reaction storage mechanism underlying the superior performance. Specifically, proton and Al3+ ions can reversibly co-intercalate/de-intercalate into/from VO2–B. The integration of shear structure and unique holey nanobelts may open the route to the design of high-performance cathodes for multi-valence ion batteries.

Graphical abstract: Bronze-type vanadium dioxide holey nanobelts as high performing cathode material for aqueous aluminium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
12 Apr 2020
Accepted
04 Jun 2020
First published
06 Jun 2020

J. Mater. Chem. A, 2020,8, 12716-12722

Bronze-type vanadium dioxide holey nanobelts as high performing cathode material for aqueous aluminium-ion batteries

Y. Cai, S. Kumar, R. Chua, V. Verma, D. Yuan, Z. Kou, H. Ren, H. Arora and M. Srinivasan, J. Mater. Chem. A, 2020, 8, 12716 DOI: 10.1039/D0TA03986A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements