Issue 3, 2012

Highly corrosion resistant platinum–niobium oxide–carbon nanotube electrodes for the oxygen reduction in PEMfuel cells

Abstract

Nanocomposite materials consisting of platinum deposited on carbon nanotubes are emerging electrocatalysts for the oxygen reduction reaction in PEM fuel cells. However, these materials albeit showing promising electrocatalytic activities suffer from unacceptable rates of corrosion during service. This study demonstrates an effective strategy for creating highly corrosion-resistant electrocatalysts utilizing metal oxide coated carbon nanotubes as a support for Pt. The electrode geometry consisted of a three-dimensional array of multi-walled carbon nanotubes grown directly on Inconel and conformally covered by a bilayer of Pt/niobium oxide. The activities of these hybrid carbon-metal oxide materials are on par with commercially available carbon-supported Pt catalysts. We show that a sub-nanometre interlayer of NbO2 provides effective protection from electrode corrosion. After 10,000 cyclic voltammetry cycles from 0.5 V to 1.4 V, the loss of electrochemical surface area, reduction of the half-wave potential, and the loss of specific activity of the NbO2 supported Pt were 10.8%, 8 mV and 10.3%, respectively. Under the same conditions, the catalytic layers with Pt directly deposited onto carbon nanotubes had a loss of electrochemical area, reduction of half-wave potential and loss of specific activity of 47.3%, 65 mV and 65.8%, respectively. The improved corrosion resistance is supported by microstructural observations of both electrodes in their post-cycled state. First principles calculations at the density functional theory level were performed to gain further insight into changes in wetting properties, stability and electronic structure introduced by the insertion of the thin NbO2 film.

Graphical abstract: Highly corrosion resistant platinum–niobium oxide–carbon nanotube electrodes for the oxygen reduction in PEM fuel cells

Supplementary files

Article information

Article type
Paper
Submitted
15 Sep 2011
Accepted
06 Jan 2012
First published
02 Feb 2012

Energy Environ. Sci., 2012,5, 6156-6172

Highly corrosion resistant platinum–niobium oxide–carbon nanotube electrodes for the oxygen reduction in PEM fuel cells

L. Zhang, L. Wang, C. M. B. Holt, B. Zahiri, Z. Li, K. Malek, T. Navessin, M. H. Eikerling and D. Mitlin, Energy Environ. Sci., 2012, 5, 6156 DOI: 10.1039/C2EE02689A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements