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Palladium-catalyzed chemoselective
decarboxylative coupling of alkynyl carboxylic
acids with halogenated aryl triflatest

£2° On Ying Yuen,$? Shan Shan Ng? and Chau Ming So () *@

A palladium-catalyzed chemoselective decarboxylative coupling of alkynyl carboxylic acids with haloge-
nated aryl triflates has been developed for the efficient synthesis of OTf-arylalkyne scaffolds. Notably, this
transformation exhibits an inversion of the conventional chemoselectivity order, favoring C-Br > C-Cl >
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Introduction

Decarboxylative coupling is a powerful tool-type strategy for
the formation of C-C and C-heteroatom bonds, allowing for
the construction of useful heterocyclic skeletons and pharma-
ceutically active molecules." Moreover, this strategy features
the utilization of facilely prepared and stable carboxylic acids
and low toxicity carbon dioxide as a by-product which has
therefore received extensive attention.”> Since Lee and co-
workers reported the first example of decarboxylative coupling
reaction’ of alkynyl carboxylic acids with aryl halides to syn-
thesize unsymmetric diarylalkynes in 2008, this efficient strat-
egy has drawn wide attention, and has been explored for the
construction of C-C,* C-N,® C-Br,° C-P,” C-S,® C-Se,’ C-B,"°
and C-Si'" bonds. The employment of alkynyl carboxylic acids
as surrogates for terminal alkynes offers an advantageous strat-
egy for managing low-boiling-point alkynes, enhancing both
the practicality and safety of their manipulation. Although the
decarboxylative coupling of alkynyl carboxylic acids has
advanced significantly, most studies have focused on sub-
strates with a single electrophilic site (Scheme 1A).>* In con-
trast, chemoselective reactions involving dual electrophilic
sites remain underexplored."” Aryl halides and triflates are

“Department of Applied Biology and Chemical Technology, The Hong Kong
Polytechnic University, Hung Hom, Kowloon, Hong Kong.

E-mail: chau.ming.so@polyu.edu. hk

bHenan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry
and Chemical Engineering, Luoyang Normal University, Luoyang 471934, People’s
Republic of China

TElectronic supplementary information (ESI) available: Experimental details,
and characterization data. See DOI: https://doi.org/10.1039/d5q000339¢

{These authors contributed equally to this work.

3330 | Org. Chem. Front., 2025, 12, 3330-3335

C-OTf. In addition, a one-pot sequential strategy was established by integrating the decarboxylative
coupling with a Suzuki—Miyaura reaction, offering a versatile platform for the synthesis of difunctionalized
aromatic compounds. Density functional theory (DFT) calculations indicate that the oxidative addition
step governs the chemoselectivity, while the decarboxylation step is proposed to be rate-determining.

among the most commonly used electrophiles, with a gener-
ally accepted reactivity order of I > Br ~ OTf > Cl
(Scheme 1B)."* However, cross-coupling reactions involving
more than one electrophilic sites continue to face several key
challenges, including: (1) a limited substrate scope, (2)
difficulty in achieving clean chemoselectivity when two electro-
philic sites are present, and (3) the challenge of reversing the
conventional reactivity order—such as favoring C-Cl over C-
OTf bonds.

In recent years, we developed a new type of alkyl-heteroaryl-
based phosphorus ligand (SelectPhos) and successfully
applied it to chemoselective coupling reactions, achieving an
inversion of the conventional chemoselectivity order of C-Br >

(A) Previous studies on coupling reactions between aryl halides and alkynyl carboxylic acids
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Scheme 1 From conventional to chemoselective: coupling strategies
using alkynyl carboxylic acids.
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C-Cl > C-OTf."* In conjunction with our ongoing work on the
development of new ligands and chemoselective reactions, we
now present our latest research on the application of
SelectPhos in the chemoselective decarboxylative coupling of
alkynyl carboxylic acids with halogenated aryl triflates, demon-
strating a chemoselectivity order of C-Br > C-Cl > C-OTf
(Scheme 1C). To the best of our knowledge, this is the first dec-
arboxylative coupling of alkynyl carboxylic acids with chlor-
oaryl triflates at the C-CI bond over the C-OTf bond.

Results and discussion

We set out to investigate the chemoselective decarboxylative
coupling reaction using 3-chloro-5-methylphenyl triflate 1a
and 3-phenylpropiolic acid 2a as model substrates, with the
systematic screenings of a range of ligands (Table 1). Initially,
a series of classical phosphine ligands were screened (L1-L3).
PPh; showed the general reactivity order: OTf > Cl with excel-
lent yield; PCy; resulted in poor activity, and P¢-Buz-HBF, show
a certain extent at C-Cl bond over C-OTf bond (C-Cl: C-OTf =
10:1), but with low yield. Moreover, Buchwald-type biaryl
ligand was also tested (L4), and it showed C-OTf chemo-
selectivity. Bidentate ligands (L5-L7) were evaluated, and the
results indicated that most bidentate ligands provide C-OTf
selectivity with excellent activity. Since NHC ligand was
reported to show good C-Cl chemoselectivity over C-OTf in the
Suzuki-Miyaura coupling,'® we tested the corresponding NHC
ligand in this chemoselective decarboxylative coupling reac-
tion, but the result showed poor chemoselectivity and reactivity
(L8). To our delight, SelectPhos (L9) gave the result of excellent
C-Cl chemoselectivity (C-Cl:C-OTf > 70:1) in 71% yield.
Other SelectPhos derivatives (L11-L13) were also tested, both
substituents attached to the C2 position on the indole ring
and phosphorus atom could directly affect the selectivity and
activity, and replacing an aryl group at either position will
show the opposite selectivity. The steric hindrance size of sub-
stituents attached to the C2 position on the indole ring could
affect the selectivity, an adamantly substituent showed roughly
C—Cl selectivity but the methyl group showed C-OTf selectivity
(L14-L15).

Next, we were focused on the investigations of the optimal
conditions for this chemoselective decarboxylative coupling
reaction with SelectPhos (L9). Initially, we evaluated several
palladium source (Table S1,f entries 1-3), and dichloro-(1-
methylallyl)-dipalladium showed the optimal reactivity,
affording the corresponding product in excellent yield (95%).
The molar ratio of Pd and L9 were also evaluated (Table S1,}
entries 4-6), and 1:4 of Pd and L9 was the best choice.
Subsequently, we investigated several bases, including K;POy,,
KOAc, KF, and Cs,CO; (Table S1,} entries 7-10), but these did
not lead to a higher yield. Regarding solvent evaluation
(Table S1,T entries 11-13), we tested 1,4-dioxane, PhMe, and
CPMe, but THF provided the best activity. We tried to reduce
the dosage of 3-phenylpropiolic acid, but the yield dropped sig-
nificantly (Table S1,} entry 14). Finally, the temperature for
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Table 1 Ligand screening of chemoselective C—Cl (over C-OTf) decar-
boxylative coupling reaction?

Me Ph
oTf COOH Pd(OAc,L  TfO. Z
. Ph/ (4 mol% Pd) .
of K,CO3, THF
100°C, 3h Me Me Me
1a 2a 3a 4a 5a

Yields? (%)

Entry Ligand code Ligand 3a 4a 5a
1 L1 PPh, 0 84 0
2 L2 PCy; 0 5 0
3 L3 Pt-Bu,-HBF, 20 2 0
4 L4 O 0 35 50
PCy,
CyJohnPhos
5 L5 PhoP PP 0 73 0
dppp
6 L6 @PP"Z 0 99 0
Fe
dppf
7 L7 Me, Me 0 98 0
L .
PPhy PPhy
XantPhos
8 L8 f-PfN,qN"Pf 19 3 0
st
i-Pr i-Pr
IPr-HCI
9 L9 Pi-Pry 71 1 2
\
N
Me
SelectPhos
10 L10 PCyz 0 63 Trace
A\
Cr-0
Me
PhendolePhos
11 L11 PtBuPh 16 1 0
\
i
Me
t.
BuPhSelectPhos
12 L12 PCy2 50 2 0
\
Me
CySelectPhos
13 L13 PPhy 0 77 8
\
N
Me
PhSelectPhos
14 L14 PCyz 20 7 Trace
A\
N
Me
15 L15 PCyz 0 27 0

\Me

Y

Me

“Reaction condition: 3-chloro-5-methylphenyl triflate 1a (0.20 mmol),
3-phenylpropiolic acid 2a (0.36 mmol), Pd(OAc), (4 mol%), L
(16 mol%), K,CO; (0.40 mmol) and THF (1.0 mL) were stirred at
100 °C or 3 h. ? Calibrated GC yields were reported by using dodecane
as an internal standard.
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this reaction were also evaluated, and 100 °C was the best
choice (Table S1,T entries 15 and 16).

After obtaining the optimal reaction conditions, we pro-
ceeded to investigate the substrate scope of this chemo-
selective decarboxylative coupling reaction (Scheme 2).
Initially, we examined a range of chloroaryl triflates, and the
results showed the reaction has good substrate adaptability, no
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Scheme 2 Substrate scope for the chemoselective C—Cl (over C-OTf)
decarboxylative coupling reaction. (Reaction condition: chloroaryl
triflates 1 (0.20 mmol), alkynyl carboxylic acids 2 (0.36 mmol), dichloro-
(1-methylallyl)-dipalladium (2 mol%), L9 (16 mol%), K,CO3 (0.40 mmol)
and THF (1.0 mL) were stirred at 100 °C for 3 h. Isolated yields based on
chloroaryl triflates 1 are reported. ? The reaction was performed on a
1.0 mmol scale.)
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matter whether the C-Cl bond was at positions ortho (3b-3c),
meta (3a, 3d-3g, 3i-3j), and para (3h and 3k-p) to the C-OTf
bond, affording the corresponding products in moderate to
excellent yields (63-95%) with excellent C-Cl chemoselectivity.
Broad functional group substituents were tolerated in this
reaction, such as methyl (3a, 3e-3h, 31, 3p), methoxy (3¢, and
3i), fluoro (3j and 3m), trifluoromethyl (3n), and ketone (30).

Furthermore, this reaction accommodated a wide range of
alkynyl carboxylic acids, regardless of the electronically neutral
(2,4-di-Me, 3-Me and 4-Me), electron-donating (2-i-Pr), and
electron-withdrawing (4-Ph, 3-F, 4-F and 4-CF;) substituents
attached to the alkynyl carboxylic acids all reacted smoothly,
providing the corresponding OTf-arylalkynes in good to excel-
lent yields with good C-Cl chemoselectivity (3q-3x). Moreover,
the naphthyl propargylic acid also adapted to this reaction,
affording the corresponding product 3y in 77% yield.
Chloroheteroaryl triflates were also applicable as substrates (3z
and 3aa).

Encouraged by the positive results mentioned above, we
then studied this chemoselective decarboxylative coupling
reaction of bromoaryl triflate and bromochloroaryl triflate
(Scheme 3). To our delight, when we used 2-bromophenyl! tri-
flate (6) as the substrate, the chemoselective decarboxylative
coupling reaction proceeded successfully, yielding the corres-
ponding product in 73% with excellent C-Br chemoselectivity
over C-OTf (C-Br:C-OTf > 99:1). When using 4-bromo-2-
chlorophenyl triflate (7) as the substrate, the reaction also pro-
gressed well, providing the corresponding product in 77%
yield with excellent C-Br chemoselectivity over C-Cl and C-
OTf (C-Br: C-Cl: C-OTf > 99:1:0).

To further expand the substrate scope, we next investigated
alkyl-alkynyl carboxylic acids as cross-coupling partners
(Scheme 4). 2-Pentynoic acid, 2-hexynoic acid, and 2-octynoic
acid were found to be effective substrates, affording the
desired products in good yields and with excellent C-Cl
chemoselectivity.

To further explore the utility of this chemoselective decar-
boxylative reaction, we investigated its applicability in a
sequential synthetic protocol (Scheme 5). As shown, the chlor-

a) Brys OTf
TfO.
oTf H
Br. é €00 dichloro-ﬁ-rpethylallyl)- é
. dipalladium/L9
K,CO3,THF
100°C,3 h
6 2 3

COOH cl
Cl 4 dlchloro—(1—methyla|lyl)—
+ dipalladium/L9 o

Br—@on ‘/ W HOT(
100°C,3 h

8a

7%
Scheme 3 Pd-Catalyzed chemoselective C—Br (over C-Cl and C-OTf)
decarboxylative coupling reaction. (Reaction condition: halogenated aryl
triflate 6 or 7 (0.20 mmol), 3-phenylpropiolic acid 2a (0.36 mmol),
dichloro-(1-methylallyl)-dipalladium (2 mol%), L9 (16 mol%), K,COsz
(0.40 mmol) and THF (1.0 mL) were stirred at 100 °C for 3 h. Isolated
yields based on polyhalogenated aryl triflate are reported.).
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Scheme 4 Substrate scope for the chemoselective C—Cl (over C-OTf)
decarboxylative coupling reaction. (Reaction condition: chloroaryl
triflates 1 (0.20 mmol), alkyl-alkynyl carboxylic acids 9 (0.36 mmol),
dichloro-(1-methylallyl)-dipalladium (2 mol%), L9 (16 mol%), K,COs
(0.40 mmol) and THF (1.0 mL) were stirred at 100 °C for 3 h. Isolated
yields based on chloroaryl triflates 1 are reported.  Toluene was used.).

Cl ]

e O
1 dichloro-(1-methylallyly- | g1_7 ] o
N dipalladium/L9 X Pd,dbas/SPhos R*—\ |
K,CO3, THF K3PO4
RP-=— GOOH 100°C,3h H 110 °C, 2h I
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"
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: OMe
Me / /
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Scheme 5 One-pot sequential utilization of chemoselective decarbox-
ylative coupling. (1% step reaction conditions: chloroaryl triflates 1
(0.20 mmol), alkyl or aryl—alkynyl carboxylic acids 2 or 9 (0.36 mmol),
dichloro(1-methylallyl)dipalladium (2 mol%), L9 (16 mol%), K,COs
(0.40 mmol), and THF (1.0 mL) were stirred at 100 °C for 3 h. 2™ step
reaction conditions: 4-methoxyphenylboronic acid (0.40 mmol),
Pd,(dba); (1.5 mol%), SPhos (4.5 mol%), and KzPO4 (0.3 mmol) were
added, and the reaction mixture was stirred at 110 °C for 2 h. Isolated
yields are reported based on chloroaryl triflates 1.).

oaryl triflates initially underwent chemoselective decarboxyl-
ation to afford the corresponding intermediates. Without iso-
lating these intermediates, aryl boronic acids were sub-
sequently added to the same reaction mixture, enabling a
Suzuki-Miyaura coupling at the C-OTf bonds. This one-pot,
two-step sequence furnished the corresponding difunctiona-
lized products 11a and 11b in good yields.

To gain deeper mechanistic insight into this chemoselective
decarboxylative reaction, a series of competition experiments
were conducted (Table 2). The results revealed that the elec-
tron-deficient ~ 3-chloro-5-(trifluoromethyl)phenyl triflate
afforded the corresponding product in higher yield compared
to the electron-rich 3-chloro-5-methylphenyl triflate and the
electron-neutral 3-chlorophenyl triflate. These observations
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Table 2 Competitive experiment of different chloroaryl triflates®

R! o
0 o
dichloro-(1-methylallyl)-
Lo, . __ 9 dipalladium/L9 . oTf
T OH  KeCOs THF
R? 100 °C, 30 min R
! -
ot oTf
Entry Substrate 1 % yield” Substrate 2 % yield”
1 R'= CF; 32 R? = Me 18
2 Rl = CF3 31 RZ -H 20

@Reaction condition: substrate 1 (0.1 mmol), substrate 2 (0.1 mmol),
3-phenylpropiolic acid 2a (0.20 mmol), dichloro-(1-methylallyl)-dipalla-
dium (2 mol%), L9 (16 mol%), KzCOg (0.40 mmol) and THF (1.0 mL)
were stirred at 100 °C for 30 min. ? Calibrated GC yields were reported
using dodecane as the internal standard. Maximum yield for each sub-
strate in the reaction mixture is 50%.

suggest that reductive elimination is unlikely to be the rate-
limiting step. To further elucidate the reaction mechanism, a
series of density functional theory (DFT) calculations were sub-
sequently performed (see the ESI for details, Fig. S11). The cal-
culations involved monoligated Pd-L9 reacting with 4-chloro-
phenyl triflate and 3-phenylpropiolic acid. For the reaction pro-
ceeding through the C-Cl pathway, consistent with the experi-
mental kinetic studies, the computational results indicated
that the reductive elimination step (12K-TS, 7.9 kecal mol™)
was not rate-determining, given its notably lower activation
barrier compared to the oxidative addition and decarboxyl-
ation steps. Critically, the oxidative addition step determines
the chemoselectivity in this reaction. The higher activation
barrier for oxidative addition of the C-OTf bond (12N-TS,
22.4 keal mol™), compared to that of the C-Cl bond (12D-TS,
11.2 kcal mol™"), strongly disfavors the C-OTf pathway.
Indeed, the oxidative addition step for the C-OTf bond exhi-
bits the highest overall energy barrier among all reaction path-

‘U\%

c R

@]
=

COOK

1 KoCO3

=———COOH

Scheme 6 Proposed mechanism.
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ways examined, explaining the observed chemoselectivity
towards activation of the C-Cl bond. Within the preferred C-Cl
reaction pathway, the decarboxylation step (12H-TS, 21.3 kcal
mol ") is proposed as the rate-determining step.

Based on the results discussed herein and supporting litera-
ture ref. 4c, a plausible mechanism for the chemoselective dec-
arboxylative coupling reaction is proposed in Scheme 6. This
mechanism initiates with the oxidative addition of chloroaryl
triflate (1) to the Pd(0)L (A), forming intermediate B. This
intermediate then undergoes a ligand-exchange reaction with
the alkynyl carboxylic acid anion, produced by the reaction of
alkynyl carboxylic acid (2) with K,CO3, yielding intermediate C.
Subsequent decarboxylation of intermediate C releases CO,,
resulting in the formation of intermediate D. Finally, reductive
elimination of intermediate D leads to the formation of the
desired products (3), simultaneously regenerating the catalyti-
cally active species Pd(0)L, thus completing the catalytic cycle.

Conclusions

In summary, we have developed a palladium-catalyzed, chemo-
selective decarboxylative coupling of alkynyl carboxylic acids
with halogenated aryl triflates, enabling the synthesis of OTf-
arylalkyne scaffolds for the first time. Notably, this reaction
inverts the conventional chemoselectivity order, favoring C-
OTf over C-Cl. It also demonstrates remarkable C-Br selectivity
over both C-OTf and C-Cl bonds when employing bromoaryl
and bromochloroaryl triflates as substrates. Moreover, we
introduce a one-pot sequential strategy that integrates de-
carboxylation with Suzuki-Miyaura coupling, offering a versa-
tile platform for the efficient synthesis of difunctionalized
compounds. DFT calculations suggest that chemoselectivity is
governed by the oxidative addition step, while the decarboxyl-
ation step is rate-determining. We anticipate that this method-
ology will provide a new approach for the synthesis of alkynyl
compounds bearing diverse functional groups, enabling selec-
tive modification of alkynyl scaffolds.
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