Issue 5, 2005

Engineering the weak N–H⋯π hydrogen bond in 4-tritylbenzamide host and controlling the interaction through guest selection

Abstract

The title amide host 1 crystallizes in the wheel-and-axle framework via amide N–H⋯O dimer and includes several aromatic and aliphatic guest molecules in cavities of 40 Å2 size between supramolecular axles. Bulky triphenylmethyl groups make it impossible for the second NH donor to engage in strong hydrogen bonding and this promotes a weak intermolecular N–H⋯π interaction in inclusion adducts of aromatic and hydrophobic guests (structure type 1, guest = xylenes, chloro/bromo-toluene). On the other hand, the N–H⋯π interaction is absent for guests with C[double bond, length as m-dash]O groups because of stronger N–H⋯Oguest hydrogen bonding (type 2, guest = EtOAc, MeNO2). Crystal structures of both types are virtually identical except for the rotation of CONH2 group that transforms the N–H⋯π interaction to the N–H⋯O hydrogen bond. In addition to controlling the occurrence of the weak N–H⋯π hydrogen bond through host⋯guest recognition, a third structure type with N–H⋯Ohost and N–H⋯π hydrogen bonds is present in the anisole adduct. Amide group conformations, strong and weak hydrogen bonds, and close packing of aromatic residues determine the three structure types of composition 1·(guest)0.5 in space group P[1 with combining macron]. The CH2Cl2 solvate, 1·(CH2Cl2)1.5, has a different crystal packing in space group C2/c with guest molecules included in channels between amide dimers and also between Ph3C groups. The design and control of the weak N–H⋯π hydrogen bond are shown for the first time in a family of isomorphous crystal structures. Infrared spectroscopy and variable temperature X-ray diffraction are consistent with the hydrogen bond nature of the N–H⋯π interaction. Differential scanning calorimetry and thermal gravimetric analysis confirm the functional behavior of inclusion host 1 and show differences in the release of CH2Cl2 molecules from the two types of channels. Crystal latttice energies follow the order structure type 3 < type 2 < type 1 in the range of −90 to −76 kcal mol−1 per host molecule.

Graphical abstract: Engineering the weak N–H⋯π hydrogen bond in 4-tritylbenzamide host and controlling the interaction through guest selection

Article information

Article type
Paper
Submitted
05 Nov 2004
Accepted
09 Dec 2004
First published
05 Jan 2005

CrystEngComm, 2005,7, 44-52

Engineering the weak N–H⋯π hydrogen bond in 4-tritylbenzamide host and controlling the interaction through guest selection

C. M. Reddy, L. S. Reddy, S. Aitipamula, A. Nangia, C. Lam and T. C. W. Mak, CrystEngComm, 2005, 7, 44 DOI: 10.1039/B416985A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements