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Screening and machine learning-based prediction
of translation-enhancing peptides that reduce
ribosomal stalling in Escherichia coli

Teruyo Ojima-Kato, †*a Gentaro Yokoyama, †bc Hideo Nakano, a

Michiaki Hamada bc and Chie Motono bd

We previously reported that the nascent SKIK peptide enhances translation and alleviates ribosomal

stalling caused by arrest peptides (APs) such as SecM and polyproline when positioned immediately

upstream of the APs in both Escherichia coli in vivo and in vitro translation systems. In this study, we

conducted a comprehensive screening of translation-enhancing peptides (TEPs) using a randomized

artificial tetrapeptide library. The screening focused on the ability of the peptides to suppress SecM

AP-induced translational stalling in E. coli cells. We identified TEPs exhibiting a range of translation-

enhancing activities. In vitro translation analysis suggested that the fourth amino acid in the tetrapeptide

influences the reduction of SecM AP-mediated stalling. Additionally, we developed a machine learning

model using a random forest algorithm to predict TEP activity, which showed a strong correlation with

experimentally measured activities. These findings provide a compact peptide toolkit and a data-driven

approach for alleviating AP-induced ribosome stalling, with potential applications in synthetic biology.

Introduction

Efficient protein synthesis is crucial for synthetic biology and is
increasingly important for sustainable bio-research and indus-
try. However, despite advancements in gene design and codon
optimization, the synthesis of proteins of interest (POIs) can be
affected by various factors, including promoter strength, the
nucleotide sequence of mRNA, and tRNA availability, which can
limit protein production yields and compromise the function-
ality of synthetic circuits.1

Translation, a critical step in protein synthesis, is influenced
by the sequence of the nascent polypeptide chain itself.2,3

Emerging evidence has shown that specific nascent peptide
sequences, known as arrest peptides (APs), can interact with the
ribosomal exit tunnel, inducing ribosome stalling during

elongation.4–6 These AP-mediated stalls play pivotal roles in
regulatory circuits that modulate gene expression in response
to environmental and physiological signals.3,7

A notable example is the SecM AP (FSTPVWISQAQGIRAGP)
found in Escherichia coli, which regulates the translation of
secA, an essential component of the Sec protein translocation
system.4 The SecM AP stalls ribosomes in a sequence-dependent
manner, particularly within its arrest motif.8 In addition,
stretches of consecutive proline residues (polyproline motifs)
are known to cause ribosome stalling due to limited prolyl-tRNA
availability and slow proline incorporation kinetics.9

While these regulatory mechanisms can be biologically
advantageous in certain contexts, they present significant chal-
lenges in biotechnology and synthetic biology, where efficient
and uninterrupted translation is crucial for high-yield protein
production. Consequently, overcoming ribosome stalling has
become a focal point of research aimed at enhancing recombi-
nant protein expression systems.10,11

Our research group previously reported that inserting an
‘‘SKIK peptide tag’’ composed of the four amino acids Ser-Lys-
Ile-Lys at the N-terminus of difficult-to-express proteins enhances
protein production in both E. coli in vivo and in vitro systems, as
well as in Saccharomyces cerevisiae.12–14 This peptide tag has
proven effective in increasing protein synthesis, although the
underlying mechanism remains unclear.15–17 More recently, we
showed that the short nascent peptide sequence SKIK, when
positioned immediately upstream of an AP like SecM or a
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polyproline motif, can alleviate ribosome stalling and enhance
protein production in E. coli.18,19 Conversely, Kobo et al. reported
that AP-induced ribosomal stalling could be mitigated by a selec-
tion of randomly chosen tetrapeptides.20 Herynek et al. employed a
more direct screening approach to identify specific N-terminal
peptides that enhance soluble production of POIs using GFP-fused
constructs and fluorescence-activated cell sorting.21 Although the
molecular basis for this phenomenon remains largely unexplored,
these findings suggest that short peptide sequences might be
strategically utilized as translation-enhancing modules in synthetic
constructs to boost protein production. However, the specific
sequence features that confer translation-enhancing activity are
not well understood, and the potential for discovering new
translation-enhancing peptides (TEPs) has not been systematically
investigated. In synthetic biology, identifying and utilizing TEPs
offers a modular and programmable approach to overcoming
translation barriers. Integrating TEPs into genetic constructs
allows synthetic biologists to fine-tune translational efficiency,
optimize metabolic pathway fluxes, and enhance the production
of valuable biomolecules such as enzymes, therapeutic proteins,
and biomaterials.22,23

In recent years, machine-learning techniques have significantly
improved our ability to explore protein sequence space.24–28

Bayesian optimization frameworks have been utilized to expedite
the functional engineering of proteins.29 Generative AI models
now provide an additional avenue for de novo sequence
generation.30–33 However, both approaches rely on large training
datasets and are thus less suitable for designing very short
peptides—such as four-amino-acid sequences—where data are
inherently scarce.

In this study, we aimed to comprehensively identify novel
TEPs capable of alleviating ribosome stalling caused by the
SecM AP in E. coli. To achieve this, we constructed an artificial
randomized tetrapeptide library fused with the SecM AP fol-
lowed by the superfolder green fluorescent protein (sfGFP)
gene. Our screening identified a variety of tetrapeptides with
varying strengths of translation-enhancing activity. Further-
more, we applied machine learning methods, including a
random forest algorithm, to predict TEP candidates based on
sequence features, providing a data-driven strategy for optimiz-
ing synthetic biology designs. Our findings yield valuable
insights into the design principles governing translation effi-
ciency in the E. coli protein expression system.

Results and discussion
Screening of TEPs in E. coli from the constructed library

Screening was conducted as shown in Fig. 1. We constructed a
plasmid library, yielding a total of 1.4 � 105 E. coli HST08
transformants, and confirmed library diversity by sequencing
the randomized (NNK)4 positions of several clones (data not
shown). The pET22b-(NNK)4-SecM AP-sfGFP plasmids extracted
from the pooled E. coli clones were then used to transform
E. coli BL21(DE3) for protein expression. Of the total 1.3 � 105

transformants, approximately 0.1% exhibited fluorescence, as

shown in Fig. 1(B). Although the total number of screened
tetrapeptide sequences did not reach the full 160 000 possible
combinations, the scale was sufficient for an in vivo screening
system. Further analysis of the 217 clones, which included all
positive clones with various fluorescence intensities and some
clones with lower fluorescence, revealed that they corresponded
to 157 unique peptide sequences after removing duplicates,
representing a substantial portion of the screened library. The
strength of sfGFP fluorescence varied depending on the peptide
sequence (Fig. S1). Clones demonstrating higher fluorescence
intensity than the previously developed SKIK peptide are sum-
marized in Fig. 2. Notably, no peptide sample without an
inserted peptide showed a low intensity value of 16, while that
of SKIK was 86. During screening, IFRC exhibited the highest
intensity, followed by FSYD, VSVD, ILDW, ISMD, and SAAD.
Sequence logos were generated for both positive and negative
sequences (Fig. 2(B)). A comparison of two logos indicated that
negative clones had a relatively uniform distribution of amino
acids at all positions, whereas the positive clones displayed a
markedly higher frequency of D at the fourth position, suggest-
ing its potential role in enhancing translation.

In vitro assays using the PURE system

Based on the analysis above, clones exhibiting strong fluores-
cence—indicative of an effective ability to navigate the riboso-
mal stalling caused by SecM AP—often had D as the fourth
amino acid in the inserted tetrapeptide. Consequently, we
experimentally examined any significance of the fourth amino
acid on translational enhancement efficiency by substituting
FSYD with FSYX (see Table S1). While in vivo assays reflect the
physiological context, it is difficult to distinguish whether
reduced ribosomal stalling is due to the intrinsic effect of the
peptide or to cellular rescue factors. To directly assess the
contribution of the tetrapeptide on translation, we utilized a
reconstituted E. coli cell-free translation PURE system which

Fig. 1 Screening scheme for translation-enhancing peptides in E. coli. (A)
Plasmid library constructed in this study. RBS, ribosome binding site; XXXX,
randomized peptide encoded by (NNK)4 sequence. (B) Outline of screen-
ing procedure and sequence analysis. Typical culture plates are shown
here. Red arrows indicate examples of positive clones displaying
fluorescence.
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reconstitutes only the minimal components of translation,
rather than a live cell expression system.

The relative fluorescence intensity of each variant, normal-
ized to 1 for the control without peptide insertion, is displayed in
Fig. 3(A). FSYD, FSYE, FYYN, and FSYQ exhibited high fluores-
cence intensities, followed by FSYK. We then plotted the physi-
cochemical properties34 of the fourth amino acid against
fluorescence intensity, finding that two parameters—side chain
hydrophobicity and in/out propensity—were inversely correlated
with fluorescence intensity, with R2 values exceeding 0.5
(Fig. 3(B)). Interestingly, D, E, N, Q, and K are all classified as
polar residues. Notably, with the exception of K, they share the
common feature of possessing either a carboxyl or an amide
group in their side chains, which may be relevant to their
potential contribution to translation-enhancing activity,
although any clear association remains uncertain at this stage.

We next evaluated the peptide sequences identified through
in vivo screening (analyzed by Sanger sequencing) using the
PURE system, which is independent of cellular growth condi-
tions and background components. Peptides such as VSVD,
FSYD, SAAD, and ISMD—demonstrating high fluorescence
intensity in vivo—also exhibited strong translation-enhancing
effects in the in vitro system, with relative values of 1.3, 1.2, 1.2,
and 1.0, respectively, when normalized to the translation level
of SKIK set at 1.0 (Fig. 4). These findings suggest that while
values from in vivo and in vitro systems do not completely align,
many peptides with potential translation-enhancing activity
were successfully identified through this screening.

It is well documented that protein expression levels often
differ between in vitro and in vivo systems due to variations in

molecular environments, including mRNA stability, folding
efficiency, and the presence of regulatory or degradation

Fig. 2 Analysis of the screening result. (A) Relative fluorescence intensity
of selected E. coli-positive clones on LB agar plates with 1 mM IPTG,
exhibiting stronger fluorescence than SKIK. The four-amino-acid
sequence corresponds to peptide XXXX in the library plasmid. DNA con-
structs of samples and controls are illustrated above. (B) Logo plot analysis.
Left and right panels show the results of the positive 20 clones exhibiting
stronger fluorescence than SKIK and the negative clones analyzed by
Nextseq 550, respectively.

Fig. 3 Influence of the fourth amino acid residue in FSYX peptide on
alleviating ribosomal stalling by SecM AP. (A) DNA construct used for CFPS
and fluorescence analysis. The region XXXX is replaced with the peptide
sequence shown here. ‘‘No peptide’’ indicates no XXXX insertion between M
and SecM AP. sfGFP serves as a positive control without XXXX-SecM AP. ‘‘No
template’’ refers to the negative control of CFPS without any DNA template.
The fluorescence intensity of ‘‘No peptide’’ was regarded as 1. (B) Various
parameters of the fourth amino acid in FSYX and relative fluorescence
intensity. Seven parameters were cited from a study by Nomoto et al.34

Fig. 4 Quantitative fluorescence analysis of the in vitro translated pro-
ducts. The positive and randomly selected clones identified through in vivo
screening were evaluated using CFPS. The relative fluorescence intensities,
normalized by SKIK (regarded as 1), are presented. Error bars represent the
standard deviation from three independent experiments.
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machinery.35,36 Some 50-UTR sequences enhanced protein
expression in E. coli strains JM109 and BL21, but these effects
were not consistently replicated in a cell-free in vitro system,37

indicating the difficulty of identifying factors that function
universally across both environments.

Trans-translation is recognized as a quality control mecha-
nism in bacteria that rescues stalled ribosomes on defective
mRNAs.38–40 It involves transfer-messenger RNA (tmRNA) and the
protein SmpB, which work together to release the ribosome and tag
the incomplete polypeptide for degradation. Notably, the ribosome
rescue system differs between in vivo and in vitro translation. In
living E. coli cells, trans-translation actively resolves ribosome
stalling. However, this rescue pathway is absent in reconstituted
in vitro systems like the PURE system unless tmRNA and SmpB are
supplemented. Therefore, translation stalling events can yield
different outcomes depending on the system used.

Strategies involving modifications to the N-terminus of the
gene of interest or the addition of tetrapeptides to enhance
target protein production have been reported.21,41 However, to
our knowledge, this is the first comprehensive screening to use
the apparent alleviation of translation stalling caused by APs as
a selection criterion.

First round bioinformatics analysis

To construct a TEP prediction model, we employed and com-
pared two machine learning methods: random forest42 and
XGBoost.43 While XGBoost generally provides higher accuracy
than random forest, it is susceptible to becoming trapped in
local minima. In the initial training, we used a dataset of 158
sequences (157 newly designed peptides and SKIK) alongside
their in vitro translation-derived fluorescence intensities (Fig. 4).
Since direct learning from amino acid letters did not yield reliable
predictions, we utilized established amino acid descriptors—Z-
scale,44 T-scale,45 ST-scale46 VHSE-scale,47 and EnsembleEnergy48—
as explanatory variables. The performance of the first random
forest model is summarized in Fig. 5. The Pearson correlation
coefficient and root mean square error (RMSE) between predicted
and observed values for the overall model were 0.50 and 0.37,
respectively (Fig. 5(A)). Feature importance analysis revealed that
position-independent descriptors such as Z-scale component 5
and T-scale component 3 were among the most influential
features, with EnsembleEnergy variables also ranking highly
(Fig. 5(B)). A sequence logo generated from the top 100 predicted
sequences with high fluorescence indicated a strong preference
for N as the first amino acid residue (Fig. 5(C)). Additionally, a
Sankey diagram illustrating patterns of adjacent amino acids
revealed a dominant layout of peptide sequences (Fig. 5(D)). The
results of the XGBoost model are presented in Fig. S2, showing a
Pearson correlation coefficient of 0.51, comparable to that of the
random forest model.

Establishing a loop to improve accuracy of prediction by
incorporating new data

To evaluate the performance of the initial prediction model, we
experimentally assessed 50 peptides with the highest predicted
fluorescence intensities from a pool of 5000 candidates

generated by the first-round random forest training and were
experimentally assessed using E. coli reconstituted cell-free
protein synthesis (CFPS) (Table S2). The results indicated that
many of these peptides exhibited translation-enhancing activity
comparable to that of SKIK (Fig. 6(A)).

To improve predictive accuracy, a second round of machine
learning was conducted using the experimental data from the
initially predicted 50 peptides, along with the original dataset of
158 sequences as training data. Following this second-round
training, the overall correlation between predicted and experi-
mentally measured fluorescence intensities across all cross-
validation folds increased from 0.50 to 0.64 (Fig. 5(A) and 6(B)).
Similarly, the correlation coefficient for the XGBoost model
improved from 0.51 to 0.63 (Fig. S3). Although random forest
and XGBoost do not exactly coincide, they showed the same trend.

The density maps in Fig. S4, which display the predicted
fluorescence intensities, indicate that overall fluorescence is
distributed primarily at lower intensities. This pattern suggests
that highly active TEPs are relatively rare, aligning with the
experimental results obtained from the screening.

Sequence logo analysis (Fig. 6(C)) and Sankey diagram visua-
lization (Fig. 6(D)) of the top 100 predicted peptides revealed
patterns consistent with those observed in the first round
(Fig. 5(C)). Notably, hydrophilic amino acids were favored across
all positions, with D frequently enriched at positions 2 to 4.

To assess prediction accuracy after the second round of
training, we selected the top 10 peptides with the highest
predicted fluorescence from both the random forest and
XGBoost models. Additionally, 6 peptides that ranked highly
in both models and 15 randomly chosen sequences, regardless
of predicted values, were included for experimental validation

Fig. 5 Analysis of in vitro data and first prediction of positive peptide
sequences. Regression using a 5-fold cross-validated random forest was
performed, with the measured relative fluorescence intensity in vitro
(normalized to a value of 1 for SKIK) as the response variable. The
explanatory variables included Z-scale, T-scale, ST-scale, VHSE-scale,
and the ensemble energy of mRNA. (A) Scatter plots of predicted values
(pred) and observed values (obs) for each fold and across all folds. (B) The
top 10 most important explanatory variables in the trained random forest
model. (C) Sequence logo of the top 100 peptide sequences with the
highest predicted fluorescence values. (D) Sankey diagram of the top 100
peptides with the highest predicted values.
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(Table S3). The measured fluorescence intensities are shown in
Fig. 7(A), and their comparison with predicted values (Fig. 7(B))
indicates a strong correlation (R = 0.83) across both top-ranked
and random sequences.

The third round of machine learning utilized the second
training dataset, supplemented with the experimentally mea-
sured values of the 50 peptides described above. The correla-
tion coefficient improved to 0.66 in the random forest model
(Fig. 7(C)) and to 0.65 in the XGBoost model (Fig. S5), showing
comparable performance. A summary of model accuracy across
all rounds is provided in Table S4.

The sequence logo for the top 100 predicted peptides showed
patterns consistent with previous rounds: hydrophilic residues were
favored at all positions, with aspartic acid (D) frequently enriched at
positions 2–4, particularly at position 4 (Fig. 7(E)). The Sankey
diagrams also consistently highlighted preferred dipeptide motifs
such as NN, SN, NS, ND, NT, and NP (Fig. 5(C), 6(D), and 7(F)).
These consistent patterns in the sequence logos and Sankey dia-
grams across all three rounds indicate that the models effectively
identified common physicochemical features that define TEPs.

Feature analysis of TEPs predicted by trained models

Across all three rounds of machine learning, the top 10 most
important features among the 157 amino acid descriptors

remained largely consistent (Fig. 5(B), 6(C) and 7(D)). In the
first round, key features associated with translation-enhancing
activity included z5, T3, and ST7. In the second and third
rounds, T3, ST5, ST7, and z5 consistently ranked among the
top contributors. T-Scales summarize 67 topological descrip-
tors related to amino acid connectivity into five principal
components, explaining 91.1% of the variance. ST-Scales
expand on this by incorporating 827 3D structural features,
compressed into eight components that account for 71.5% of
the variance. These scales, along with MS-WHIM, are known for
their similar behavior in capturing amino acid similarity.49

Z-Scales, derived from experimental data such as NMR and
thin-layer chromatography, represent properties including lipo-
philicity (Z1), bulk (Z2), polarity/charge (Z3), and more complex
characteristics like electronegativity and electrophilicity (Z4,
Z5). While all these scales are derived through principal com-
ponent analysis, direct interpretation of individual components

Fig. 6 Analysis of in vitro data and the second prediction from the
random forest model. (A) From the first round of model training, 50
peptide sequences predicted to exhibit high fluorescence intensity were
selected. Their translation-enhancing activities were evaluated by measur-
ing sfGFP fluorescence in a CFPS system. Relative fluorescence intensities
are shown, using SKIK as the reference standard with a value of 1. The
corresponding peptide and DNA sequences are listed in Table S2. (B)
Scatter plots of predicted values (pred) and observed values (obs) for each
fold and across all folds. (C) Top 10 most important explanatory variables in
the random forest model trained with the additional data from panel A. (D)
Sequence logo of the top 100 peptide sequences with the highest
predicted fluorescence values. (E) Sankey diagram of the top 100 peptide
sequences with the highest predicted fluorescence values.

Fig. 7 Analysis of various peptides predicted by the second and third
predictions from the random forest model. (A) Relative fluorescence
intensities of sfGFP expressed in a cell-free protein synthesis (CFPS) system
are shown for peptide sequences predicted in the second round of
training: the top 10 sequences from the random forest (red), the top 10
from XGBoost (green), the top 10 common to both models (cyan), and 14
randomly selected sequences regardless of predicted intensity (purple).
Each peptide was fused to the N-terminus of SecM AP-sfGFP. The
fluorescence intensity is relative to SKIK, which has a value of 1, along
with mean and standard deviation from triplicate experiments. (B) The
relationship between the predicted fluorescence intensities from each of
the two trained models and the experimentally measured values shown in
panel A is presented. The sample colors correspond to the bar colors in
panel A. (C) Scatter plots of predicted values (pred) and observed values
(obs) for each fold and across all folds. (D) Top 10 most important
explanatory variables in the random forest model trained with additional
data from panel A. (E) Sequence logo of the top 100 peptide sequences
with the highest predicted fluorescence values from the random forest
learning model. (F) Sankey diagram of the top 100 peptide sequences with
the highest predicted fluorescence values.
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is often challenging. However, they are widely used to reflect
amino acid similarity and behavior in a compact, informative
manner.

Across three rounds of random forest modeling, the correla-
tion between predicted and measured fluorescence values
steadily improved, indicating enhanced predictive power as
training data accumulated. Notably, certain features, such as
T3, ST5, and z5, consistently ranked among the most important
variables throughout all rounds. This stability in feature selec-
tion supports the reliability and robustness of the model, even
in the presence of descriptor redundancy.

This study demonstrates that machine learning can effectively
predict TEP candidates from a vast sequence space of 160 000
possibilities, utilizing only a small experimentally measured
dataset. Starting with a low-bias training set, iterative model
updates incorporating predicted high-performing sequences
improved accuracy. Given the unknown mechanisms of TEPs
and limited data, interpretable models like random forest and
XGBoost were well suited to this approach. This strategy efficiently
narrowed the search space and identified novel TEPs that could
not be discovered through experimental screening alone.

Experimental
Construction of the plasmid library

The pET22b-SecM AP-sfGFP plasmid (constructed in our pre-
vious study18) was used as the PCR template. To insert (NNK) �
4 codons immediately after the initiation codon ATG, inverse
PCR was performed using the primer pair 50-GGAGATA-
TACATATG�N�N�K�N�N�K�N�N�K�N�N�KTTCAGCACGCCCGTCTGGATAAG-30

and 50-CATATGTATATCTCCTTCTTAAAGTTAAAC-30 with KOD
One polymerase (Toyobo, Osaka, Japan). The underlined nucleo-
tides correspond to the randomized four amino acids. The PCR
product was treated with DpnI (Takara Bio, Kusatsu, Japan, 37 1C
for 30 min and 70 1C for 10 min for inactivation) and purified
using a spin column (Econospin, Ajinomoto Bio-Pharma, San
Diego, CA). The purified linear vector DNA was then self-
assembled using Gibson assembly (New England Biolabs, Ips-
wich, MA). High-performance E. coli HST08 competent cells
(Takara Bio) were transformed with the product, and colonies
were grown on LB plates containing 100 mg L�1 ampicillin. The
colonies were pooled with TE buffer (10 mM Tris–HCl, 1 mM
EDTA, pH 8.0) followed by plasmid extraction using a commer-
cial plasmid purification kit (Plasmid DNA Extraction Midi Kit,
Favorgen Biotech Corp., Ping Tung, Taiwan).

Screening of E. coli clones

The constructed plasmid library ‘‘pET22b-(NNK)4-SecM AP-
sfGFP’’ was introduced into E. coli BL21 (DE3) strain for protein
expression. The cells were spread on LB agar plates containing
100 mg L�1 ampicillin and 1 mM isopropyl b-D-thio-
galactopyranoside (IPTG). Competent cells were prepared using
a commercially available kit (Mix & Go, Zymoresearch, Irvine,
CA). Colonies grown on the LB plates at 37 1C for 16 h were
analyzed using a MultiImager II fluorescent imaging apparatus

with the appended software MISIS II (BioTools Co., Ltd, Takasaki,
Japan; filter set ex 485 nm, em 590/60 nm band-pass, gain setting
13 dB, exposure 16 ms). The picked single colonies were sus-
pended in 50 mL of sterile water and further spotted onto fresh
culture plates under the same conditions and incubated for an
additional 16 h at 37 1C. The brightness of the fluorescence from
the growing colonies was analyzed using ImageJ software.

Sequencing analysis

Sequencing analysis of all positive clones exhibiting fluorescence
and some negative clones with low fluorescence was performed
using the Sanger method. Colony-directed PCR products were
amplified with the primers F1 (ATCTCGATCCCGCGAAATTAA-
TACG) and R1 (TCCGGATATAGTTCCTCCTTTCAG), which anneal
upstream of the T7 promoter and downstream of the T7 termi-
nator, respectively. Remaining E. coli clones that did not exhibit
significant fluorescence were classified as negative. They were
suspended in TE buffer and pooled from the agar plates, and their
plasmids were extracted as described above. The DNA fragment
(161 bp) containing the randomized region was amplified with the
primer pair AAGAAGGAGATATACATATG and ATTAACATCAC-
CATCCAGTTC from the extracted plasmid as the template. The
purified DNA fragment was analyzed with the Nextseq 550 using
single-end read mode (81 bp) to fully cover the randomized
region. The NEBNext Ultra II DNA Library Prep Kit for Illumina
and NextSeq 500/550 High Output Kit v2 (75 cycles) were used for
sample preparation. The resulting data were analyzed using
Seqkit50 and a Python program to generate a peptide sequence
list of the negative clones.

In vitro protein expression

To confirm the effect of the obtained peptides on translation,
cell-free protein synthesis (CFPS) was conducted using PURE-
frex 2.1 (GeneFrontier, Kashiwa, Japan) with DNA fragments
amplified using Gflex DNA polymerase (Takara) and F1 and R1
primers from single colonies. CFPS conditions were as follows:
DNA template; 1 mL, Solution I; 2 mL, Solution II; 0.125 mL,
Solution III (ribosome); 0.5 mL, and DEPC-treated RNase-free
water (Nacalai Tesque, Kyoto, Japan); 1.375 mL. Reactions were
performed at 37 1C for 90 min in triplicate. Each CFPS reaction
solution was diluted 25-fold with water, and 50 mL was dis-
pensed into the wells of a Black Microplate Flat Bottom 96-well
(Stem, Hino, Japan). The fluorescence intensity of sfGFP was
measured using a microplate reader (Infinite 200 PRO, TECAN,
ZH, Switzerland) at an excitation wavelength of 485 nm (band-
width 9 nm) and an emission wavelength of 535 nm (bandwidth
20 nm).

Construction of the mutants

The peptide FSYX (where X represents 20 amino acids) and
other peptide candidates identified using a machine learning
prediction tool were introduced via PCR using KOD One
(Toyobo) and the corresponding primer pairs, as outlined in
Table S1. E. coli HST08 competent cells were transformed with
the DpnI-treated amplified PCR products. Plasmids containing
the correct sequences were purified for further experiments.
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Data mining from in vivo data

We conducted a computational analysis to identify the char-
acteristics of TEPs obtained from in vivo screening. Peptide
sequences with identical amino acid compositions were aver-
aged along with their corresponding fluorescence intensity
values, forming a single data point. To explore sequence
features associated with translation-enhancing activity, we
initially analyzed the sequence composition of both positive
and negative clones. Sequences were classified as positive if
their fluorescence intensity surpassed that of the SKIK control.
Sequence logos were created using the ggseqlogo package in R
to visualize amino acid preferences at each position.

Prediction of TEPs with machine learning

We next used in vitro experimental data to train models for
predicting novel TEP sequences with high fluorescence. All
fluorescence values used for training were normalized relative
to the SKIK sequence. The input features comprised four amino
acid descriptor sets—Z-scale, T-scale, ST-scale, and VHSE-
scale—representing the physicochemical and geometric prop-
erties of amino acids numerically. For each descriptor, values
were calculated for each residue position and the overall
sequence average. In addition, to consider codon-level effects
on translation, the mRNA free energy of the first 11 codons was
calculated using the EnsembleEnergy function from RNAstruc-
ture, as described in a previous study.51

The Z-scale, T-scale, ST-scale, and VHSE-scale descriptor sets
consist of 5, 5, 8, and 8 features, respectively. Each feature set was
applied to six aspects of the peptide sequence: the five individual
residue positions (including the N-terminal methionine) and the
overall sequence average. This yielded a total of 156 amino acid–
based features. We also included the EnsembleEnergy value of the
first 11 codons as an mRNA-level descriptor, bringing the total
number of features used in model training to 157. To enhance
clarity given the large number of features, simplified abbrevia-
tions are employed throughout this study. For instance, the
average value of a descriptor across the entire sequence is labeled
as ‘‘z1,’’ while values corresponding to specific positions include a
positional suffix, such as ‘‘z1_3,’’ where ‘‘3’’ indicates the position
in the peptide sequence. Position numbering starts at 0, with ‘‘0’’
denoting the initial M residue. The descriptor ‘‘EnsembleEnergy’’
is abbreviated simply as ‘‘energy.’’

We performed a 5-fold cross-validation to ensure the robust-
ness of our analysis. Random forest and XGBoost models were
trained using the caret package in R. The ntree parameter in the
random forest was set to 1000 to ensure sufficient convergence,
while the mtry parameter was determined through grid search
techniques. The optimal model was evaluated using predicted
and measured RMSEs. Similarly, in XGBoost, the optimal
values for eta, max_depth, gamma, colsample_bytree, min_-
child_weight, subsample, and nrounds were determined
through grid search. In each iteration, the model with the
lowest RMSE was selected. However, because RMSE values
can be influenced by variations in the range or distribution of
the training data, Pearson’s correlation coefficient was

employed to evaluate and compare model performance across
iterations. Unlike RMSE, the correlation coefficient is scale-
independent and reflects the strength of the linear relationship
between predicted and observed values, making it more suita-
ble for comparisons across datasets of varying sizes. All optimal
hyperparameter values are presented in Table S5.

After training, we predicted fluorescence intensity for all
possible tetrapeptide sequences (approximately 160 000 combi-
nations) and selected TEP candidate sequences. For experi-
mental verification of these predicted peptides, optimal codons
were assigned based on the E. coli codon adaptation index.52 To
maximize sequence diversity, candidates were selected not only
based on top predicted scores but also through clustering to
ensure broad representation of sequence types. Our experi-
mental process employed an iterative training approach, con-
sisting of three rounds of machine learning and experimental
validation. In the first round, 50 high-scoring candidate peptides
were selected based on the trained model and evaluated through
in vitro translation. The measured data were then integrated into
the training dataset for the second round. An additional 40
peptides were tested experimentally and included in the third
round of training. This iterative process aimed to enhance both
the accuracy of the predictive models and the efficiency of
candidate identification. Model performance was monitored in
each round to track improvements in predictive accuracy.

Conclusions

We identified a diverse array of short TEPs capable of mitigating
ribosome stalling induced by the SecM AP in E. coli. A machine
learning model trained on these data accurately predicted peptide
performance, providing a rational framework for designing
translation-enhancing sequences. This study not only offers a
compact and tunable peptide toolkit for improving translation
efficiency but also demonstrates the utility of data-driven approaches
in peptide engineering. Future research may extend this strategy to
other organisms or arrest motifs, enabling broader applications in
synthetic biology and recombinant protein production.
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peptide and DNA sequence data, machine learning model
parameters and performance metrics, and additional figures
showing experimental results and prediction analyses. See DOI:
https://doi.org/10.1039/d5cb00199d.

The software used in this study is available from GitHub at:
https://github.com/hmdlab/ml-tep.
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