Design of a unidirectional water-transport skin-derived wearable material through engineering a natural pore-size gradient for personal wet–thermal management†
Abstract
Unidirectional water-transport wearable materials play a key role in enhancing human comfort by effectively removing excess sweat. However, making unidirectional water-transport wearable materials, other than textiles, remains a challenge. Hence, a novel unidirectional water-transport skin-derived wearable material (UWT-Skin) is skillfully engineered based on a natural pore-size gradient from animal skin. The hydrophilic polyurethane fibrous membrane and hydrophobic polyvinylidene-fluoride coating on both sides of the natural skin derived from animal skin together create a gradient in pore size from macro to sub-micron levels, as well as a hydrophobic-to-hydrophilic gradient across the UWT-Skin. Leveraging the unidirectional capillary force generated by this dual-gradient design, UWT-Skin demonstrates an excellent unidirectional water-transport capability (R) of 731%, independent of gravity and over a wide range of sweat pH values. Gratifyingly, UWT-Skin promotes sweat removal, weakens sticky adhesion, and prevents excessive cooling (maintaining ∼2.0 °C higher than cotton and common N-Skin), thereby providing enhanced personal wet–thermal comfort in hot or humid environments. Additionally, it exhibits outstanding water vapor permeability (3943.5 g (m2 24 h)−1), air permeability (2659.1 mL (cm2 h)−1), mechanical properties, softness and colorization, all of which ensure wearability. Overall, the successful development of this natural skin-derived wearables is valuable for evoking the enthusiasm for wearing them in sunny weather and inspires further innovation in natural fiber materials designed to provide personal wet–thermal comfort.

Please wait while we load your content...