Issue 11, 2022

Preparation of polycation with hydroxyls for enhanced delivery of miRNA in osteosarcoma therapy

Abstract

Osteosarcoma, a malignant bone tumor that usually occurs in children and adolescents, has a high rate of death and disability, bringing great pains to society and families. Improving treatment approaches for osteosarcoma patients remains a constant and major goal for researchers and clinical groups due to the limited therapeutic efficiency and survival rate. MiRNAs have been reported to play a crucial role in osteosarcoma occurrence, progression, and metastasis, which provides a new insight for osteosarcoma therapy. In other words, the intervention of the involved miRNA may be a promising way for osteosarcoma. In this study, we developed ethanolamine (EA)-decorated poly(glycidyl methacrylate) (PGMA) polycations (termed as PGEAs) to deliver miR-223 for osteosarcoma inhibition. The introduced hydroxyl groups via EA modification in the PGEA vector can form a hydration shell, hinder protein adsorption, and help the PGEA-based delivery system escape from the in vivo clearance, which further benefits the accumulation of the delivery system in the tumor area. A series of in vitro anti-tumor assays illustrate that the PGEA-2 vector can efficiently deliver miR-223 into osteosarcoma cells for impressive anti-tumor effects via inhibiting malignant behavior of osteosarcoma cells, including proliferation, migration, and invasion. Osteosarcoma inhibition assays in vivo further confirmed the anti-tumor efficiency of PGEA-2/miR-223 complexes without inducing evident toxicity. This work will help develop miRNA for osteosarcoma therapy, and the proposed PGEA based delivery system also provides a promising and safe strategy for gene therapy of osteosarcoma.

Graphical abstract: Preparation of polycation with hydroxyls for enhanced delivery of miRNA in osteosarcoma therapy

Supplementary files

Article information

Article type
Paper
Submitted
20 Feb 2022
Accepted
25 Mar 2022
First published
07 Apr 2022

Biomater. Sci., 2022,10, 2844-2856

Preparation of polycation with hydroxyls for enhanced delivery of miRNA in osteosarcoma therapy

D. Chen, B. Zhang, J. Cao, H. Wang, P. Luo, W. Liu, X. Niu, R. Wang and J. Nie, Biomater. Sci., 2022, 10, 2844 DOI: 10.1039/D2BM00253A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements