Critical metal recovery from spent lithium-ion batteries’ leaching solution using electrodialysis technologies: strategies and challenges†
Abstract
Accompanied by the ever-increasing demand for lithium-ion batteries (LIBs) worldwide, the recovery of spent LIBs, for both environmental concerns and social needs, is considered an efficient way to tackle the coming retirement tide of LIBs. Although hydrometallurgy is highly recognized for realizing the high-value recycling of critical metal elements from leaching solutions via chemical purification methods, its associated complex operations, large chemical consumption, and low efficiency fail to meet sustainability and eco-friendliness considerations, requiring an innovative separation approach to achieve these aims. Electrodialysis (ED) has emerged as an advanced membrane separation technology offering continuous operation and scalability advantages but has yet to be widely applied in recycling critical metals from the leaching solutions of spent LIBs. In this review, we introduce the fundamentals and evaluation indicators of the ED technique. Besides, the challenges of ED in metal extraction from the leaching solution are discussed. In addition, strategies for improving the separation performance of ED are provided and highlighted. Finally, we present the opportunities and challenges for the use of ED techniques in metal extraction from the leaching solution of spent LIBs.
- This article is part of the themed collection: 2024 Inorganic Chemistry Frontiers Review-type Articles