Issue 33, 2023

Interface synthesis of Cu-BTC/PVDF hybrid membranes and their selective adsorption activity toward Congo red

Abstract

Considering the surface affinity of MOFs and separation advantages of polymer membranes, herein, a one-step interface synthesis strategy is used in the construction of Cu-BTC/PVDF hybrid membranes, in which Cu2+ ions and 1,3,5-benzenetricarboxylic acid (H3BTC) were dissolved in ionized water and n-octanol separately, and polyvinylidene fluoride (PVDF) films were laid at the interface of two immiscible solvents. As a result, Cu-BTC was generated and readily self-assembled inside the PVDF films. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) and the Brunauer–Emmett–Teller (BET) method were used to characterize Cu-BTC/PVDF hybrid membranes, and Congo red (CR) was selected as the target dye to evaluate the surface adsorption activity of the hybrid membranes. Batch adsorption tests under various conditions were conducted to optimize the adsorption capacity, adsorption kinetics, isotherms and thermodynamics, which were analyzed to further explore the adsorption behavior. Based on this, the adsorption mechanism was discussed. It is worth noting that because of the π–π stacking interaction and hydrogen bonding, an extraordinary adsorption capacity of CR was achieved, and the good separation advantage and the cyclic adsorption performances endow the resulting Cu-BTC/PVDF hybrid membranes with promising applications in the removal of organic dyes from practical wastewater.

Graphical abstract: Interface synthesis of Cu-BTC/PVDF hybrid membranes and their selective adsorption activity toward Congo red

Supplementary files

Article information

Article type
Paper
Submitted
30 Jun 2023
Accepted
26 Jul 2023
First published
27 Jul 2023

Dalton Trans., 2023,52, 11441-11450

Interface synthesis of Cu-BTC/PVDF hybrid membranes and their selective adsorption activity toward Congo red

D. Hu, Z. Sun, Y. Han, H. Meng and X. Zhang, Dalton Trans., 2023, 52, 11441 DOI: 10.1039/D3DT02042H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements