Issue 47, 2010

Preparation of superhydrophobic and oleophobic diamond nanograss array

Abstract

The paper reports on the fabrication of superhydrophobic boron-doped diamond nanograss surfaces. The boron-doped diamond nanograss array (BDD NG) was prepared simply by reactive ion etching (RIE) with oxygen plasma of highly boron-doped (the boron doping level is 8 × 1019 B cm−3) polycrystalline diamond electrodes. Depending on the RIE conditions, substrates with different nanograss densities can be prepared. Chemical functionalization of the NG array surface with octadecyltrichlorosilane (OTS) or 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFTS) led to the formation of superhydrophobic surfaces. Under optimized conditions, BDD NG surfaces with contact angles as high as 160° and quasi null hysteresis (< 2°) can be reached. A water droplet deposited on the surface tends to roll off when the NG surface was tilted by a few degrees. Furthermore, the BDD NG array chemically modified with PFTS displays oleophobic properties. A contact angle of 94° was measured for hexadecane. The resulting surfaces were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and contact angle (CA) measurements.

Graphical abstract: Preparation of superhydrophobic and oleophobic diamond nanograss array

Article information

Article type
Paper
Submitted
03 May 2010
Accepted
10 Aug 2010
First published
30 Sep 2010

J. Mater. Chem., 2010,20, 10671-10675

Preparation of superhydrophobic and oleophobic diamond nanograss array

Y. Coffinier, E. Galopin, S. Szunerits and R. Boukherroub, J. Mater. Chem., 2010, 20, 10671 DOI: 10.1039/C0JM01296C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements