Synergetic insights into Nb single atoms and lithiophilic support for high-efficiency sulfur catalysis in Li–S batteries
Abstract
The sulfur reduction reaction (SRR) is the core of lithium–sulfur (Li–S) batteries, and a comprehensive understanding of the SRR contributes to catalyst design for high-performance Li–S batteries. However, unclear relationships between active lithium ions and lithium polysulfide (LiPS) conversion activity are always overlooked. Here, we elaborately synthesized Nb-single-atom catalysts (Nb–C3N4−x), where the strong Nb–S bond reduces the S–S bond energy and accelerates LiPS conversion. Meanwhile, inspired by aqueous electrocatalytic reactions, we propose surface-active Li+ (*Li+) as a crucial intermediate for SRR kinetics. On Li+-rich catalysts, LiPSs can react directly with *Li+ which avoids the slow Li+ migration across the electrolyte–electrode interface to LiPSs. The Nb–C3N4−x-based full cell works steadily at a low negative/positive capacity ratio and a lean electrolyte with a capacity retention rate of 87.01%. This work complements the comprehension of the SRR, and provides theoretical guidance for the screening of Li–S battery catalysts.