Issue 25, 2023

Recent progress of biosensors for the detection of lung cancer markers

Abstract

Lung cancer is one of the most common cancers worldwide and the leading cause of death. Early screening of lung cancer is exceptionally essential for later treatment. Abnormal lung cancer tumor markers are validated to assess their diagnostic utility in non-small cell lung cancer (NSCLC) patients. Therefore, tumor markers can be identified in the early stage of lung cancer through biosensor technology and timely diagnosis. This review discusses cutting-edge methods for detecting various types of lung cancer tumor markers using multiple biosensors. The biosensors working at the molecular level are mainly introduced, which can be divided into three categories according to the types of markers: DNA biosensors, RNA biosensors, and protein biosensors. This review focuses on critical electrochemical methods such as electrochemical impedance spectroscopy (EIS), field-effect transistors (FET), cyclic voltammetry (CV), necessary optical sensors such as surface enhancement Raman spectroscopy (SERS), surface-plasmon resonance (SPR), fluorescence methods, and some novel sensing platforms such as biological nanopore and solid-state nanopore sensors and these sensors detect lung cancer tumor markers, such as microRNA (miRNA), DNA mutations (EGFR, KRAS and p53), DNA methylation, circulating tumor DNA (ctDNA), cytokeratin fragment 21-1 (CYFRA21-1), carcinoembryonic antigen (CEA), matrix metallopeptidase 9 (MMP-9), and vascular endothelial growth factor (VEGF). The advantages and disadvantages of different methods are summarized and prospected on this basis, which provides important insights for developing pioneering optoelectronic biosensors for the early diagnosis of lung cancer.

Graphical abstract: Recent progress of biosensors for the detection of lung cancer markers

Article information

Article type
Review Article
Submitted
20 Oct 2022
Accepted
13 Mar 2023
First published
29 Mar 2023

J. Mater. Chem. B, 2023,11, 5715-5747

Recent progress of biosensors for the detection of lung cancer markers

S. Chen, M. Li, T. Weng, D. Wang and J. Geng, J. Mater. Chem. B, 2023, 11, 5715 DOI: 10.1039/D2TB02277J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements