RSC Advances

PAPER

Cite this: RSC Adv., 2017, 7, 8779

Received 15th November 2016 Accepted 19th January 2017

DOI: 10.1039/c6ra26859e

www.rsc.org/advances

1. Introduction

Nitridosilicates doped with active ions (such as Eu^{2+} and Ce^{3+}) have been widely used as phosphors in phosphor-converted light emitting diodes (pc-LEDs) in consideration of their high chemical and thermal stability in combination with low thermal quenching and high conversion efficiencies.¹–³ Compared to traditional phosphors such as orthosilicates (e.g. $\text{Sr}_2\text{SiO}_4\text{:Eu}^{2+})^4$ or alkaline earth sulfides (e.g. $SrCa₂S₄:Eu²⁺$),⁵ nitridosilicates have more diversiform crystal structures owing to their more varied crosslinking patterns.⁶ In nitridosilicates, the N can connect up to four neighboring Si tetrahedral centers, causing a higher degree of lattice condensation to improve the chemical stability of nitride phosphors, preventing the hydrolysis reaction which often happens in phosphors with terminal or ionic O or S atoms over time.^{7,8}

In the last few years, research into rare earth metals activating alkaline-earth-metal nitridosilicates-based phosphors has become increasingly important, such as MSi_6N_8 (M = Sr and Ba),^{9,10} MSi₇N₁₀ (M = Sr, Ba),^{11,12} M₂Si₅N₈ (M = Ca, Sr and Ba),^{13–15} MSiN₂ (M = Sr, Ba),¹⁶ and Ba₅Si₂N₆.¹⁷ Among the available alkaline earth nitridosilicates-based phosphors, $SrSi₆N₈$ is very different from the others. For example, the oxidation states of Si are +III and +IV in $Srsi_6N_8$, and the framework contains single Si–Si bonds in N_3 Si–Si N_3 , 9 as seen in Fig. 1(a). Also, $SrSi₆N₈:Eu²⁺$ was reported to have blue

Electronic, optical and mechanical properties of $SrSi₆N₈$ and $SrSi₆N₈O$ via first-principles

Zhifeng Huang, Fei Chen,* Jianwen Zhang, Qiang Shen and Lianmeng Zhang

The different properties of two structurally similar nitridosilicates, $SrSi₆N₈$ and $SrSi₆N₈O$, are attributed to the oxygen atom. To explore the effects of the O atom on the properties, structural, electronic, optical and mechanical properties of SrSi₆N₈, SrSi₆N₈O and O-doped SrSi₆N₈ have been simulated via first-principles in this work. The results indicate the Si–O–Si bond is stronger than the Si–Si bond, resulting in a more stable crystal structure of SrSi₆N₈O compared with SrSi₆N₈. The calculated bandgaps (E_q) of SrSi₆N₈ and SrSi₆N₈O are 3.10 and 3.97 eV, respectively. The lower E_q of SrSi₆N₈ originates from the Si-Si σ^* bond, however, the E_q can be enlarged through introducing the O atom into the Si-Si bond. The optical properties illustrate that the refractive peaks are blue-shifted with O doping into the lattice of SrSi₆N₈. Furthermore, the elastic properties show that $SrSi₆N₈$ and $SrSi₆N₈O$ are comparable to traditional mechanical ceramics such as sialons. This work not only expounds the difference between $SrSi₆N₈$ and $SrSi₆N₈O$, but also gives theoretical foundation for their potential applications as optical and mechanical materials. PAPER

Cluster and the state of the sta

luminescent property of 450-455 nm,^{18,19} while most of nitridosilicates-based phosphors emitted yellow to red wavelengths. Besides, because of the structural similarity compared with MSi_6N_8 , MSi_6N_8O (M = Ca and Ba) based material has also been reported to have excellent luminescent properties. Fig. 1(b) shows the crystal structure of $Srsi_6N_8O$, which can be gained by inserting one O atom into the single Si-Si bond in $Srsi₆N₈$.⁹ Although there is no experimental report of the preparation of pure SrSi₆N₈O, the compound of Sr₂Si_{12-x}Al_xN_{16-x}O_{2+x}:Eu²⁺ ($x \approx$ 2) has been synthesized by Z Shen.²⁰ $Sr_2Si_{12-x}Al_xN_{16-x}O_{2+x}$ exhibits an isotypic structure compared with $Srsi₆N₈O$, therefore the analogous silicon atoms are also bridged by oxygen atoms. Also, the photoluminescence properties of Eu activating Cas_{6} - N_8O and Ba Si_6N_8O have been studied experimentally. The reported main photoluminescent peaks are at about 500 nm for $BaSi₆N₈O:Eu²⁺,^{21,22}$ 614 and 587 nm for $BaSi₆N₈O:Eu³⁺,²³$ and 405 nm for $\text{CaSi}_6\text{N}_8\text{O}:\text{Eu}^{2^+,\text{24}}$ Furthermore, some alkaline-earthmetal nitridosilicates have been reported to have excellent mechanical properties. For instance, $SrSi₇N₁₀$ has a yield hardness of 16.1(5) GPa ,¹¹ and CaAlSiN₃ has been considered as a relatively hard materials from first-principles simulation.²⁵ However, even $SrSi₆N₈$ and $SrSi₆N₈O$ have been investigated a lot in previous works, there is almost no paper having reported their basic characteristics such as electronic, optical and mechanical properties. In order to take full advantage of the properties of $SrSi₆N₈$ and $SrSi₆N₈O$ for eventual technological applications, a better understanding of their electronic, optical and mechanical properties is required. What's more, the photoluminescence peaks of intrinsic and O-replacement defective $SrSi₆N₈$ have been reported by Wen Yeh et al. to locate at 452 and 652 nm,

State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China. E-mail: chenfei027@gmail.com; Fax: +86-27-87879468; Tel: +86-27-87168606

RSC Advances **Paper** Paper **Paper Paper Paper**

Fig. 1 Projective representation of $2 \times 2 \times 1$ supercells of (a) SrSi₆N₈ and (b) $SrSi₆N₈O$

respectively.²⁶ The results show that the oxygen atom has significant effect on electronic and optical properties of $SrSi₆N₈$. Actually, nitrogen-rich sialon materials, with partial substitutions of Si by Al and N by O, have attracted great interest owing to their excellent optical and mechanical performance.³ The ratio of O: N has the significant effect on the properties of sialon materials. So introducing the O atom into the lattice of $SrSi₆N₈$ may generate positive effects on electronic, optical and mechanical properties. Considering that the big difference between $SrSi_6N_8$ and $SrSi_6$ - N_8O is the O atom, investigating the effect of O atom on $SrSi₆N_8$ may also give some ideas to understand the difference in their properties.

Herein, in this work, first-principles calculations²⁷⁻²⁹ have been used to investigate the electronic, optical and mechanical properties of $SrSi₆N₈$, $SrSi₆N₈O$, and O-doped $SrSi₆N₈$. On the one hand, this work has given the comparison and explanation of the difference between $SrSi₆N₈$ and $SrSi₆N₈O$ in electronic, optical and mechanical properties. On the other hand, the effects of O atom on $SrSi₆N₈$ have also been investigated through introducing O atoms to replace different N atoms and to insert into the single Si–Si bond. This work not only explains the difference between $SrSi₆N₈$ and $SrSi₆N₈O$, but also gives the theoretical foundation for their potential applications.

2. Theoretical and computational methods

Fig. 1 shows the crystal structures of $2 \times 2 \times 1$ SrSi₆N₈ and 2×2 \times 1 SrSi₆N₈O supercells. As seen in Fig. 1(a), there are two types of connectivity models of N atoms, which are bonded with two Si atoms (marked as $N^{[2]}$) and three Si atoms (marked as $N^{[3]}$). And the spatial locations of $Si-N^{[3]}-Si$ bonds are vertical and with a certain angle to the b axis.⁹ So, we marked the $N^{[2]}$ as N_1 , the two N atoms in the different Si-N^[3]-Si bonds as N₂ and N₃, the Si atoms in the Si-Si bonds as $Si₁$, and the other Si atoms as

Si₂, as seen in Fig. 1(a). Herein, four types of O-doped $2 \times 2 \times 1$ $SrSi₆N₈$ supercells were considered in our work, which were O_i substituting to N_i ($i = 1, 2$ and 3) and O_4 inserting into the Si-Si bond, and marked as O_i -SrSi₆N₈ (*i* = 1, 2, 3 and 4), respectively.

All first principle calculations were performed using Cambridge Serial Total Energy Package (CASTEP) code.²⁹ The electronic exchange–correlation function was Perdew Burke Ernzerhof (PBE) of generalized gradient approximation (GGA).³⁰ Ultrasoft pseudopotentials were used with $5s^2 5p^0$, $3s^2 3p^2$, $2s^2$ $2p³$ and $2s² 2p⁴$ as the valence-electron configurations for Sr, Si, N and O atoms, respectively, to describe the interactions between ions and electrons.³¹ With convergence testing, the plane-wave cutoff energy of 400 eV and k-point meshes of 3×2 \times 3 were used to ensure the accuracy and efficiency of calculations. The threshold for self-consistent field iterations was 5.0 \times 10⁻⁷ eV per atom. The convergence tolerance parameters of optimized calculation were the energy of 1.0×10^{-5} eV per atom, the maximum force of 0.03 eV \AA^{-1} , the maximum inner stress of 0.05 GPa and the maximum displacement of 1.0 \times 10^{-4} nm. After finishing geometry optimizations, electronic, optical and mechanical properties of all models were calculated. The lattice stabilities of all the optimized structures were evaluated by the phonon dispersions, where the imaginary frequency was the sign of lattice instability.^{32,33} **EXAMPELE COMPRESS ARTICLE COMPRESS ARE COMPRESS ARTICLE COMPRESS AR**

Considering no experimental report of the preparation of pure $SrSi₆N₈O$, we used the acid–base idea as mentioned by M. Mikami³⁴ to assume the solid-state reaction for production of $SrSi₆N₈O$. The binary oxide is generally considered as acid while binary nitride as base. So the reaction for production of $Srsi₆$ - N_8O should be defined as following:

$$
\text{SrO} + 2\text{Si}_3\text{N}_4 \rightarrow \text{SrSi}_6\text{N}_8\text{O} \tag{1}
$$

The formation energy (E_{form}) of reaction [1] was calculated as following equation:

$$
E_{\text{form}} = E_{\text{SrSi}_6\text{N}_8\text{O}} - E_{\text{SrO}} - 2E_{\text{Si}_3\text{N}_4}
$$
 (1)

where the $E_{\text{Srsi}_6\text{N}_8\text{O}}$, E_{SrO} and $E_{\text{Si}_3\text{N}_4}$ were the total energies of $SrSi₆N₈O$, SrO and α -Si₃N₄, respectively. A negative value of formation energy indicates the reaction is exothermic and the production is stable.

The binding energy (E_b) can be used to investigate the relative stability of the model. The value of binding energies of all models were calculated by the following formula:³⁵

$$
E_{\rm b} = \frac{E_{\rm tot} - (n_{\rm Si}\mu_{\rm Si} + n_{\rm N}\mu_{\rm N} + n_{\rm O}\mu_{\rm O})}{n_{\rm Si} + n_{\rm N} + n_{\rm O}}\tag{2}
$$

where the E_{tot} was the total energy of the considered model, and the chemical potentials of Si, N and O were defined as $\mu_{\text{Si}} =$ $\mu_{\text{bulk--Si}}$, $\mu_{\text{N}} = \mu_{\text{N}_2}/2$ and $\mu_{\text{O}} = \mu_{\text{O}_2}/2$, respectively.^{36,37} The coefficients n_{Si} , n_{N} and n_{O} were the numbers of the Si, N and O atoms in each model. For O-doped $Srsi_6N_8$ models, the values of bonding energies were used to predict the preferential position for O doping in the lattice of $Srsi_6N_8$.

Understanding elastic properties of nitridosilicates is very important for their application and improvement. For orthorhombic crystals, it is known that the mechanical stability requires elastic constants satisfying the following conditions:^{38,39}

$$
c_{ij} > 0 \quad (i = 1 \sim 6),
$$
\n
$$
c_{11} + c_{22} + c_{33} + 2c_{12} + 2c_{13} + 2c_{23} > 0,
$$
\n
$$
c_{11} + c_{22} - 2c_{12} > 0,
$$
\n
$$
c_{11} + c_{33} - 2c_{13} > 0,
$$
\n
$$
c_{22} + c_{33} - 2c_{23} > 0
$$
\n(3)

The mechanical constants: bulk modulus (B) , shear modulus (G), Young's modulus (E) , and Poisson's ratio (ν) have been calculated using the following equations: $38,39$

$$
B = (1/9)(c_{11} + c_{22} + c_{33} + 2c_{12} + 2c_{13} + 2c_{23})
$$
 (4)

 $G = (1/15)[(c_{11} + c_{22} + c_{33} + 3(c_{44} + c_{55} + c_{66}) - c_{12} - c_{13} - c_{23})]$ (5)

 $E = 9BG/(3B + G)$ (6)

$$
\nu = (1/2)(3B - 2G)/(3B + G) \tag{7}
$$

Table 1 Optimized lattice parameters, bond lengths and binding energies of all models

3. Results and discussion

3.1 Geometry optimization results

Table 1 lists the calculated lattice parameters, average bond lengths and binding energies of all models. The lattice parameters of 2 \times 2 \times 1 SrSi₆N₈ and 2 \times 2 \times 1 SrSi₆N₈O supercells are well agreement with previous results.^{9,24} There is no big change in the lattice parameters after O doping into $SrSi₆N₈$. The slight volume expansions come from the changes of local bond lengths. The average bond lengths of $Si-O^{[2]}$ and $Si-O^{[3]}$ are larger than the Si–N^[2] and Si–N^[3] in O_i–SrSi₆N₈ (*i* = 1, 2 and 3), while the average bond length of $Si-O^{[2]}$ is smaller than the $Si-N^{[2]}$ in O_4 -Sr Si_6N_8 . The results indicate that different coordination environments of O atom has different effects on the Si-O bond lengths. The E_{form} of pure SrSi₆N₈O calculated by eqn (1) is -0.37 eV, which indicates that the reaction $[1]$ is somewhat exothermic and $SrSi₆N₈O$ is stable. The lower value of E_b indicates the more stable degree of the model. The E_b (-1.71 eV) of $Srsi_6N_8O$ means that it has the more stable crystal structure and can be easier to synthesis compared with SrSi_6N_8 (–1.40 eV). These phenomenon is corresponding to the fact that $SrSi₆N₈$ is a kind of reduced nitridosilicate and must be synthesized under the condition of extreme lack of oxygen.⁹ The $E_{\rm b}$ of O_4 -SrSi₆N₈ (-1.45 eV) is the lowest one among all O-doped $SrSi₆N₈$ models, meaning that O atom prefers to insert into the single Si–Si bond to stabilize the crystal structure of $SrSi₆N₈$.

Furthermore, phonon dispersions of all optimized models have been calculated to evaluate the structural stability, as seen in Fig. 2. The results shows that there is no imaginary frequency of pure $SrSi₆N₈$ and $SrSi₆N₈O$, which means that $SrSi₆N₈$ and $Srsi₆N₈O$ are structurally stable. The lowest frequencies of O_i $Srsi₆N₈$ $(i = 1, 2, 3 \text{ and } 4)$ are $-0.20, -0.81, -0.53 \text{ and } -0.05$ THz, respectively. According to the previous works, the small negative frequencies of O_1 -Sr Si_6N_8 and O_4 -Sr Si_6N_8 could be ignored because the small negative frequencies may be caused by the relatively smaller supercells and lower computational accuracies.32,33 However, the calculation of phonon dispersion is time consuming with a bigger supercell and higher computational accuracy. So we think it is reasonable to consider O_1 - $Srsi₆N₈$ and $O₄-Srsi₆N₈$ as structurally stable models based on the calculated phonon dispersions. While, the structures of $O₂$ – $Srsi₆N₈$ and $O₃ - Srsi₆N₈$ are metastable or unstable according to their obvious imaginary frequencies as seen in Fig. 2(d) and (e). The results of phonon dispersions are well agreement with the results of bonding energies (E_b) , which means that the structures of O_1 –SrSi₆N₈ and O_4 –SrSi₆N₈ are more stable than O_2 – $SrSi₆N₈$ and $O₃-SrSi₆N₈$. Paper

orthoronicles. First European Access Article 2017. The European Access Article is the common and the calculated by the second under the measure of the mea

3.2 Electronic properties

Fig. 3 shows the band structures and partial density of states (PDOS) of $Srsi_6N_8$ and $Srsi_6N_8$ O. The calculated bandgaps (E_{φ}) of $SrSi₆N₈$ and $SrSi₆N₈O$ are 3.10 and 3.97 eV, respectively. Although, there is no experimentally reported the E_g of $Srsi_6N_8$

 a Ref. 9. b Ref. 19.

or SrSi₆N₈O, our GGA calculated E_g are expected to be smaller than experimental values since the underestimation of GGA calculation.³⁹ While the effects of oxygen on electronic

Fig. 3 Band structures and partial density of states (PDOS) of (a) $SrSi₆N₈$ and (b) $SrSi₆N₈O₈$

properties of $SrSi₆N₈$ can be expounded through the relative changes. The top of valence bands of $Srsi_6N_8$ and $Srsi_6N_8O$ are occupied by N 2p states. Differing in band structures from the other alkaline-earth-metal nitridosilicates,⁶ there are some energy levels below the conduction bands of $SrSi₆N₈$, which are mainly constituted of Si 3p states as seen from the PDOS. Furthermore, the 3p states of $Si₁$ contribute the more parts of the bottom of conduction bands compared to $Si₂$, which indicates that the energy levels below the conduction bands are attributed to the single Si–Si bond. The previous works reported that Si-Si bond forms an empty σ^* state under the bottom of conduction bands in some nitrides.^{40,41} Therefore, the Si-Si σ^* state is the main reason for the lower bandgap of $Srsi_6N_8$ compared to $SrSi₆N₈O$.

Furthermore, the electron density distribution (EDD) plots are calculated to investigate the difference between Si–Si and Si– O–Si bonds. Fig. 4(a) and (b) illustrate the partial atom distributions and corresponding EDD plots on the (010) plane of $SrSi₆N₈$ and $SrSi₆N₈O$, respectively. We can find that there is

Fig. 4 Partial atom distributions and corresponding electron density distribution plots of (a) $SrSi₆N₈$ and (b) $SrSi₆N₈O$ on the (010) plane.

a small amount of electron density distributing in the center of Si–Si bond in $SrSi₆N₈$, while a high density of electron gathers on the O atoms in $SrSi₆N₈O$. The stronger electronic interaction of Si–O–Si bond gives the more stable crystal structure for $Srsi₆N₈O$, which is consistent with results of the calculated E_b . Besides, the electron densities of O atoms are obviously higher than that of N atoms in $Srsi_6N_8O$, which is attributed to the stronger electronegativity of O atom.

The calculated band structures and PDOS of the O atoms and its adjacent Si atoms for all O-doped $SrSi₆N₈$ models are plotted in Fig. 5. The calculated bandgaps (E_g) of O_i –SrSi₆N₈ (*i* = 1, 2, 3 and 4) are 3.17, 2.84, 3.09 and 3.33 eV, respectively. For O_1 - $Srsi₆N₈$, as seen in Fig. 5(a), the band structure of $O_1-Srsi₆N₈$ is very close to that of undoped $SrSi₆N₈$, which indicates that the $O^{[2]}$ has the similar properties of $N^{[2]}$. As seen in Fig. 5(b) and (c), the reason of the E_g decreasing for O_2 -SrSi₆N₈ and O_3 -SrSi₆N₈ is that the hybrid Si–O bonds generate energy levels under the conduction bands. For O_4 -Sr Si_6N_8 , the distribution of O 2p states are very similar to that of $Srsi₆N₈O$, showing that the $O₄$ atom has the same character to the O atoms in $Srsi₆N₈O$. The E_g of O_4 -SrSi₆N₈ is larger than that of SrSi₆N₈, which indicates that inserting O atom into the single Si–Si bond to decrease the concentration of Si-Si bonds can increase the $E_{\rm g}$. Paper

Access Articles. Published on 27 January 2017 and 27 January 2017 and 2017. The control of the Creation of the Creation of the Creation of the Creation of Creation 2017. The Creation of the Creation 3.0 Unported to

3.3 Optical properties

The absorption coefficient is one of key parameters to evaluate the performance for phosphors. The absorption spectra can be described in terms of time-dependent perturbations of the ground-state electronic states, which has always been investigated combined the electron transition between valance bonds

Fig. 6 Calculated absorption spectra of $SrSi₆N₈$, $SrSi₆N₈O$ and Odoped SrSi₆N₈ models.

and conduction bonds.⁴² Fig. 6 shows the calculated absorption spectra of all models. The absorption peak for undoped $SrSi₆N₈$ is located at about 3.0–15.0 eV, which are corresponding to the electron transitions from N 2p states in the valence bands to Si 3p and Sr 5s states in the conduction bands as shown from PDOS in Fig. 3(a). The absorption edge of $SrSi₆N₈O$ starts at 3.9 eV, with a large blue shift compared to that of $Srsi₆N₈$ at 2.9 eV. The positions of the main absorption peaks for O_i $Srsi₆N₈$ (i = 1, 2, 3 and 4) are almost the same as $Srsi₆N₈$, while the absorption intensities become lower. Besides, as show in the enlarged view in Fig. 5, the weak peaks located around 0– 3.0 eV of the O_2 –Sr Si_6N_8 and O_3 –Sr Si_6N_8 derive from the electron

Fig. 5 Band structures and PDOS of (a) O_1 –SrSi₆N₈, (b) O_2 –SrSi₆N₈, (c) O_3 –SrSi₆N₈, and (d) O_4 –SrSi₆N₈

Fig. 7 Calculated refractive spectra of $SrSi₆N₈$, $SrSi₆N₈O$ and O-doped $SrSi₆N₈$ models.

transitions between Si–O hybrid states under the bottom of conduction bands and conduction bands, as shown in Fig. 5(b) and (c).

Fig. 7 shows the refractive spectra of $SrSi₆N₈$, $SrSi₆N₈O$ and Odoped $SrSi₆N₈$ models. Although, there is no experimentally reported refractive index (n) of $SrSi₆N₈$ or $SrSi₆N₈O$, the static refractive indexes (n_0) of SrSi₆N₈ (1.67) and SrSi₆N₈O (1.39) are expected to be lower than the experimental value due to the underestimated calculation of GGA-PEB.³⁹ Nevertheless, the relative changes can reflect the effects of O atoms on $SrSi₆N₈$. The calculated static refractive indexes of O_i –SrSi₆N₈ (*i* = 1, 2 and 3 and 4) are 1.65, 2.08, 1.69 and 1.56, respectively, which are well corresponding to Moss rule that the static refractive index is inversely proportional to the E_g .⁴³ Except for the static refractive indexes, the main peaks of refractive indexes of all O-doped $SrSi₆N₈$ models are lower than that of $SrSi₆N₈$. Furthermore, compared with $SrSi₆N₈$, the locations of main peaks for $SrSi₆N₈O$ are significantly blue-shift. The results of optical properties show that different doping sites of O atoms in $SrSi₆N₈$ have different effects on its basic absorption and refractive spectra.

3.4 Mechanical properties

The optimized structures of all models have been applied to calculate the elastic tensors which consist of nine independent components, as tabulated in Table 2. It can be seen that the relationships of elastic constants satisfy the conditions as shown in eqn (3), which indicates that $SrSi₆N₈$, $SrSi₆N₈O$ and O-doped $SrSi₆N₈$ are mechanically stable.

Table 3 Calculated bulk modulus B (GPa), shear modulus G (GPa), Young's modulus E (GPa) and Poisson's ratio ν for all models

Models	R	G	E	$\boldsymbol{\nu}$
SrSi ₆ N ₈	175.92	111.84	276.85	0.24
O_1 -SrSi ₆ N _s	150.5	102.58	250.77	0.22
O_2 -SrSi ₆ N ₈	174.99	116.7	286.43	0.23
O_3 -SrSi ₆ N _s	174.33	112.15	277.04	0.24
O_4 -SrSi ₆ N _s	170.93	100.6	252.30	0.25
SrSi ₆ N ₈ O	181.09	113.85	282.37	0.24

Furthermore, the mechanical constants: bulk modulus (B), shear modulus (G) , Young's modulus (E) , and Poisson's ratio (v) for all models are listed in Table 3. The mechanical constants: B, G and E of $Srsi_6N_8O$ are larger than that of $Srsi_6N_8$, which mainly attributes to the more stable Si–O–Si bond than Si–Si bond. Though introducing O atom produces a certain degree of lattice distortion in $SrSi₆N₈$, there is no obvious deterioration on mechanical properties of O-doped $SrSi₆N₈$ compared to undoped $SrSi₆N₈$, even some mechanical constants are improved. Besides, with the comparison of traditionally mechanical ceramics such as sialons $(B = 170-240 \text{ GPa}, G = 118.84 \text{ GPa}$ and $E = 197-283$ GPa),^{44,45} the mechanical properties of all models considered in this work indicate that they have the application prospect for mechanical ceramics.

4. Conclusions

In this work, first-principles simulation has been performed to investigate the structural, electronic, optical and mechanical properties of $SrSi₆N₈$, $SrSi₆N₈O$ and O-doped $SrSi₆N₈$. Firstly, this work has given the comparison and explanation of the difference between the two structurally similar nitridosilicates $SrSi₆N₈$ and $SrSi₆N₈O$. The results show that $SrSi₆N₈O$ is more stable than $SrSi₆N₈$, and the E_g of $SrSi₆N₈O$ is larger than that of $SrSi₆N₈$. The key factor of the difference between $SrSi₆N₈$ and $SrSi₆N₈O$ is the O atom. Namely, the Si-O-Si bond is stronger than the single Si–Si bond, which contributes to the more stable crystal structure of $SrSi₆N₈O$. And the Si-Si σ^* states under the conduction bonds are the main reason for the smaller E_g of $SrSi₆N₈$ compared to $SrSi₆N₈O$.

Secondly, the effects of O on electronic, optical and mechanical properties of $SrSi₆N₈$ have been investigated systematically. The crystal structure of $SrSi₆N₈$ can be stabilized with doping O into the lattice and the most preferential doping position of O is

insertion between the single Si–Si bonds. And introducing O into the Si-Si bond can significantly increase the E_g of SrSi₆N₈. The static refractive indexes become larger for O substituting to N models while become smaller for the O insert into the Si–Si bond. Besides, the calculated mechanical constants are comparable to traditionally mechanical ceramics such as sialons, which indicates $SrSi₆N₈$, $SrSi₆N₈O$ and O-doped $SrSi₆N₈$ have potential applications as mechanical materials. This work is helpful to understand the difference between $SrSi₆N₈$ and $SrSi₆N₈O$, and opens up their possibility of new application. Paper Wester Column single Si-Si bonds. And introducing O into 19 S. M. We, H. E. Hung, C. H. Fishe, Y. C. Lin, L. C. Wany

The Geolec is not article. Published on Case, 2017. Downloaded on Case, 2017. Downloaded on 27 A.

Acknowledgements

The project is supported by the National Natural Science Foundation of China (51202171, 51472188 and 51521001), the Specialized Research Fund for the Doctoral Program of Higher Education of China (20120143120004), the "111" project (B13035), the Fundamental Research Funds for the Central Universities (WUT: 2016-YB-003) and the China Scholarship Council (CSC).

Notes and references

- 1 R. J. Xie and N. Hirosaki, Sci. Technol. Adv. Mater., 2007, 8, 588–600.
- 2 S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma and Q. Y. Zhang, Mater. Sci. Eng., R, 2010, 71, 1–34.
- 3 M. Zeuner, S. Pagano and W. Schnick, Angew. Chem., Int. Ed., 2011, 50, 7754–7775.
- 4 N. Lakshminarasimhan and U. V. Varadaraju, J. Electrochem. Soc., 2005, 152, H152–H156.
- 5 S. M. Jacobsen, J. Soc. Inf. Disp., 1996, 4, 331–335.
- 6 R. J. Xie, Y. Q. Li, N. Hirosaki and H. Yamamoto, Nitride Phosphors and Solid-State Lighting, Taylor & Francis, 2011.
- 7 P. Schmidt, A. Tuecks, J. Meyer, H. Bechtel, D. Wiechert, R. Mueller-Mach, G. Mueller and W. Schnick, 7th Inter. Conf. Solid State Lighting, 2007.
- 8 H. Huppertz and W. Schnick, Z. Anorg. Allg. Chem., 1997, 623, 212.
- 9 F. Stadler, O. Oeckler, J. Senker, H. A. Höppe, P. Kroll and W. Schnick, Angew. Chem., Int. Ed., 2005, 117, 573–576.
- 10 F. Stadler and W. Schnick, Z. Anorg. Allg. Chem., 2007, 633, 589–592.
- 11 G. Pilet, H. A. Höppe, W. Schnick and S. Esmaeilzadeh, Solid State Sci., 2005, 7, 391.
- 12 Y. Q. Li, A. C. A. Delsing, R. Metslaara, G. de Witha and H. T. Hintzen, J. Alloys Compd., 2009, 487, 28.
- 13 M. Zeuner, F. Hintze and W. Schnick, Chem. Mater., 2009, 21, 336.
- 14 K. S. Sohn, B. Lee, R. J. Xie and N. Hirosaki, Opt. Lett., 2009, 34, 3427.
- 15 H. Nersisyan, H. I. Won and C. W. Won, Chem. Commun., 2011, 47, 11897.
- 16 C. J. Duan, X. J. Wang, W. M. Otten, A. C. A. Delsing, J. T. Zhao and H. T. Hintzen, Chem. Mater., 2008, 20, 1597.
- 17 H. Yamane and F. J. DiSalvo, J. Alloys Compd., 1996, 240, 33–36.
- 18 K. Shioi, N. Hirosaki, R. J. Xie, T. Takeda and Y. Li, J. Mater. Sci., 2008, 43, 5659–5661.
- 19 S. M. Wu, H. E. Hung, C. H. Hsieh, Y. C. Lin, L. C. Wang, Y. T. Tsai, C. C. Lin and R. S. Liu, J. Am. Ceram. Soc., 2015, 98, 2662–2669.
- 20 Z. Shen, J. Grins, S. Esmaeilzadeh and H. Ehrenberg, J. Mater. Chem., 1999, 9, 1019–1022.
- 21 N. Karkada, D. Porob, N. K. Prasanth and A. Setlur, ECS Trans., 2009, 16, 41–50.
- 22 R. J. Xie, N. Hirosaki, Y. Li and T. Takeda, J. Lumin., 2010, 130, 266–269.
- 23 S. A. Fartode, B. S. Reddy, V. Nayar and S. J. Dhoble, Ferroelectr., Lett. Sect., 2016, 43, 34–51.
- 24 Y. H. Song, T. Y. Choi, Y. Y. Luo, K. Senthil and D. H. Yoon, Opt. Mater., 2011, 33, 989–991.
- 25 Z. Wang, B. Shen, F. Dong, S. Wang and W. S. Su, Phys. Chem. Chem. Phys., 2015, 17, 15065–15070.
- 26 C. W. Yeh, Y. P. Liu, Z. R. Xiao, Y. K. Wang, S. F. Hu and R. S. Liu, J. Mater. Chem., 2012, 22, 5828–5834.
- 27 G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59, 1758.
- 28 Q. Peng, X. J. Chen, S. Liu and S. De, RSC Adv., 2013, 3, 7083– 7092.
- 29 M. D. Segall, P. J. Lindan, M. A. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, J. Phys.: Condens. Matter, 2002, 14, 2717.
- 30 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- 31 M. Marlo and V. Milman, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, 62, 2899.
- 32 L. Zhu, L. Li, T. Cheng and D. Xu, J. Mater. Chem. A, 2015, 3, 5449–5456.
- 33 S. S. Bhat, U. V. Waghmare and U. Ramamurty, Cryst. Growth Des., 2014, 14, 3131–3141.
- 34 M. Mikami, ECS J. Solid State Sci. Technol., 2013, 2, R3048– R3058.
- 35 S. Yang, D. Li, T. Zhang, Z. Tao and J. Chen, J. Phys. Chem. C, 2011, 116, 1307–1312.
- 36 F. Oba, K. Tatsumi, I. Tanaka and H. Adachi, J. Am. Ceram. Soc., 2002, 85, 97–100.
- 37 K. Yang, Y. Dai and B. Huang, J. Phys. Chem. C, 2007, 111, 12086–12090.
- 38 Z. Wu, X. Hao, X. Liu and J. Meng, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, 75, 054115.
- 39 B. Tu, H. Wang, X. Liu, W. Wang and Z. Fu, J. Am. Ceram. Soc., 2014, 97, 2996–3003.
- 40 L. E. Hintzsche, C. M. Fang, M. Marsman, G. Jordan, M. W. P. E. Lamers, A. W. Weeber and G. Kresse, Phys. Rev. B: Condens. Matter Mater. Phys., 2013, 88, 155204.
- 41 Z. Huang, F. Chen, Q. Shen and L. Zhang, RSC Adv., 2016, 6, 7568–7574.
- 42 R. Asahi, Y. Taga, W. Mannstadt and A. J. Freeman, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, 61, 7459.
- 43 T. S. Moss, Phys. Status Solidi B, 1985, 131, 415–427.
- 44 J. Hafner, Z. Lenčéš and P. Šajgalík, J. Am. Ceram. Soc., 2003, 86, 1162–1167.
- 45 L. Benco, J. Hafner, Z. Lences and P. Sajgalik, J. Eur. Ceram. Soc., 2008, 28, 995–1002.