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A general, economical, and environmentally friendly method of amide synthesis from phenyl esters and aryl

amines was developed. This new method has significant advantages compared to previously reported

palladium-catalyzed approaches. The reaction is performed transition metal- and solvent-free, using

a cheap and environmentally benign base, NaH. This approach enabled us to obtain target amides in

high yields with high atom economy.
Introduction

Amides are one of the widest classes of compounds found in
natural products, as well as in pharmaceuticals. Their synthesis
has been, and continues to be, the focus of signicant attention
in synthetic chemistry.1–3 Many of the well-established methods
for amide synthesis involve reagents that are difficult to handle
and lead to generation of large quantities of waste products.
Recent publications demonstrated the increasing interest of the
pharmaceutical industry (e.g. ACS Green Chemistry Institute
Pharmaceutical Roundtable) in amide bond formation. Thus,
amide bond formation is among the most important synthetic
transformations requiring improved methods.4

Most popular approaches of amide synthesis utilize prelimi-
nary preparation of expensive activated esters or use of stoi-
chiometric quantities of peptide-coupling reagents, followed by
treatment with amines.2,5,6 Several methods of one-pot direct
synthesis of amides from carboxylic acids as well as a number of
non-conventional approaches, such as oxidative amidation of
alcohols, are reported.3,4,7–9 Transamidation route to amides is
also well-known.4,10–15 A number of reviews were published on the
methods of amide synthesis.9,16–19

Amide synthesis from amines and cheap unactivated esters
using various catalysts is rather promising.20–26 Recent publica-
tions have documented rapid transformation of Buchwald–
Hartwig cross-coupling into an efficient tool to create C–N bonds
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from aryl halides and amines used abundantly in industrial ne
organic synthesis.27–31

In the past two years, efforts of groups lead by Stephen G.
Newman (Scheme 1A),32 Michal Szostak (Scheme 1B),33 and
Nilay Hazari (Scheme 1C)34 resulted in a successful transfer of
aryl halide cross-coupling techniques onto esters.35–37 Che-
moselective cleavage of the C(acyl)–O bond provided easy
access to various arylamides hardly available by traditional
methods.19,38–40 These new cross-coupling methods utilize
easily available unactivated esters, non-nucleophilic amines,
and air-stable catalytic systems. Despite the fact that the
above-mentioned methods are rather efficient, they are not
free from drawbacks, requiring toxic solvents, transition
Scheme 1 Cross-coupling reactions of amines and esters.
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metal-based catalysts, and generating a lot of waste (low atom
economy).

One of the major challenges in organic chemistry is the
development of methods that are of high performance, ecologi-
cally benign, and economically feasible. Application of solvents
as reaction media negatively affects product cost through solvent
price and cost of solvent processing or utilization. Besides, usage
of solvents can cause harm for employees and environment.
Therefore, development of cross-coupling reaction conditions
requiring no use of solvents is rather promising since it could
lower direct and indirect expenses by means of lower amount of
waste, increase of reaction rate, lower catalyst load, and better
synthesis scaling up.

For the last several years our group was active in the
development of “green” chemical approaches that might be
relevant both for academia and industry. Our target is “to
eliminate organic solvents from organic chemistry” by devel-
opment of solvent-free synthetic approaches. This motivated
us to report for the rst time a new general method of amides
synthesis from phenyl esters under green solvent- and transi-
tion metal-free conditions. The implementation of this
approach promises simplicity, high efficiency, atom economy
and ecological safety, while giving opportunities to avoid
particular disadvantages of conventional methods (Scheme 1D
vs. Scheme 1A–C).
Results and discussion

We performed optimization of solvent-free amidation of
phenyl esters using model reaction of o-toluidine and phenyl
Table 1 Optimization of the reaction conditionsa

Entry Catalyst Base T (�C) Yieldb, %

1 3 mol% IPrPd(allyl)Cl K2CO3
c,d 110 98

2 3 mol% IPrPd(allyl)Cl K2CO3
c 110 90

3 — K2CO3 110 32(3)e

4 — K2CO3 150 39(32)e

5 — K3PO4 150 57
6 — Cs2CO3 150 15
7 — t-BuOK 150 38
8 — DBU 150 75
9 — DBN 150 56
10 — DABCO 150 61
11 — NaH 150 80
12 — NaH 130 97a

13 — NaH 120 95
14 — NaH 90 80

a Reaction conditions: phenyl benzoate 1a (0.7 mmol), o-toluidine 2a
(0.735 mmol, 1.05 equiv.), base (0.735 mmol, 1.05 equiv.), T �C (oil-
bath temperature), 20 h, heat. b Yield determined by 1H NMR of the
crude mixture with BHT as internal standard. c 1.5 equiv. of base.
d Conditions ref. 32. e Without base.

This journal is © The Royal Society of Chemistry 2019
benzoate (Table 1). Initially, we compared performance of
IPrPd(allyl)Cl, proposed by Stephen G. Newman, under solvent
(Table 1, example 1),32 and solvent-free conditions (Table 1,
example 2). Yield of product under solvent-free conditions was
found to decrease from 98 to 90%. Performing reaction in the
absence of both solvent and catalyst resulted in product yield
of 32% (Table 1, example 3). In the absence of the catalyst,
solvent, and base the reaction proceeded with only 3% yield
(Table 1, example 3). Temperature increase up to 150 �C in the
absence of base and catalyst have led to a considerable
increase of amide yield from 3 to 32% (Table 1, example 4).
Utilization of K2CO3 base under these conditions resulted in
a small increase of the product yield compared to base-free
conditions, from 32 to 39% (Table 1, example 4). Since
further increase of temperature seemed unreasonable, we
screened bases available at 150 �C. Replacement of K2CO3 with
Cs2CO3, decreased the yield down to 15% (Table 1, example 6).
Utilization of a strong base t-BuOK did not lead to increase of
the reaction yield (Table 1, example 7). Reaction proceeded
with higher yield (57%) in case of K3PO4 (Table 1, example 5).
Strong organic bases, such as DBN (1,5-diazabicyclo(4.3.0)
non-5-ene)41 and DABCO (1,4-diazabicyclo[2.2.2]octane)
showed moderate yields, whereas DBU (1,8-diazabicyclo[5.4.0]
undec-7-ene)17,18,23 was slightly more active (Table 1, examples
8–10). The highest yield (80%) was obtained when NaH was
used as a base (Table 1, example 11).

Next, we studied the temperature effect on the product yield
employing NaH as the most suitable base (Table 1, examples
11–14). It turned out that practically quantitative yield was
achieved at 130 �C (Table 1, example 12). Thus, heating of nearly
equimolar mixture of phenyl benzoate, ortho-toluidine and
sodium hydride in absence of solvent and palladium catalyst
produced target amide 3a in almost quantitative yield.

With optimal conditions in hand, the scope and limitations
of the elaborated conditions was examined; we screened various
aryl amines in reaction with phenyl benzoate (Table 2). For
example, aniline yielded 82% of corresponding amide (Table 2,
3d). The described conditions were found to tolerate halogen-
substituted anilines. In case of meta- and para-substituted F-,
Cl-, and Br-substituted anilines, as well as 2-uoroaniline,
amides were obtained in good to quantitative yields (Table 2, 3j,
3k, 3l, 3v, 3w, 3u).

Anilines bearing one substituent at the ortho-position affor-
ded products 3a, 3g, 3p, 3u in high yields. Good yields were
obtained for anilines with both donor (Table 2, 3h, 3i, 3o, 3p)
and acceptor functional groups (Table 2, 3c, 3t). Utilization of
acceptor heterocyclic amines resulted in some decrease in
yields (Table 2, 3q, 3r, 3s). Notably, benzylamine also gave good
product yield (Table 2, 3n).

Diminished yields were observed in case of anilines bearing
bulky substituents in ortho-positions, e.g. anilines 2e and 2f
(38% for 3e, 62% for 3f).

Next stage of our studies was screening of aryl esters in
a model reaction with aniline (Table 3).

For example, esters of aliphatic acids demonstrated lower
reactivity compared to phenyl benzoate (Table 3, examples 3df,
3di vs. 3a of Table 2). The aniline reaction with heterocyclic
RSC Adv., 2019, 9, 1536–1540 | 1537
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Table 2 Scope of anilidesa,b

a Reaction conditions: phenyl benzoate 1a (0.7 mmol), amine 2 (0.735
mmol), NaH (0.735 mmol), 130 �C (oil-bath temperature), 20 h. b Yield
determined by 1H NMR of the crude mixture with BHT as internal
standard.
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acids esters proceeded with good yields (Table 3, examples 3dc,
3dh, 3dj).

Interestingly, ve-membered heterocyclic esters exhibited
higher activity than six-membered counterparts (Table 3, 3dh,
3dj vs. 3dc). The phenyl esters of para-substituted benzoic acids
produced amides in high yields (3db, 3de, Table 3 vs. 3d, Table
2). Phenyl ester of sterically hindered 2,4,6-trimethylbenzoic
acid showed lower reactivity (Table 3, 3dd).

Thus, we successfully elaborated conditions for high-yield
solvent- and transition metal based catalyst-free amide
synthesis and tested them on a wide range of substrates.

It should be noted that our method showed product yields
comparable to those in palladium-catalyzed methods of amide
synthesis (Table 4). In some cases, proposed method showed
higher efficiency compared to palladium-catalyzed methods
(Table 4, examples 3b, 3o, 3z, 3dh, 3v, 3c).

Thus, compared with previously reported transition-metal-
catalyzed methods, the elaborated method possesses several
advantages, the most important of which is exploitation of
sodium hydride, one of the simplest and most readily available
inorganic bases, whereas catalytic methods require expensive
catalysts, bases and solvents. Absence of transition metals,
solvents, toxic reagents for carboxylic group activation (e.g.
carbodiimides) makes proposed protocol a viable alternative for
green amide synthesis. At the same time several disadvantages,
such as hydrogen evolution and high reaction temperature,
Table 3 Scope of phenyl estersa,b

a Reaction conditions: aryl ester 1 (0.7 mmol), aniline 2d (0.735 mmol),
NaH (0.735 mmol), 130 �C (oil-bath temperature), 20 h. b Yield
determined by 1H NMR of the crude mixture with BHT as internal
standard.

This journal is © The Royal Society of Chemistry 2019
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Table 4 Comparison of different methods

Entry Product Method Aa, % Method Bb, % Method Cc, % This workd, %

1 3a 98 75 96 97
2 3b — — 92 95
3 3c 55 — — 85
4 3d 91 96 90 82
5 3e — 90 — 38
6 3h — 84 95 85
7 3o 61 — — 72
8 3p 93 — — 80
9 3q 85 — — 72
10 3v — — 95 99
11 3y — — 87 72
12 3z — — 82 96
13 3dh 68 75 — 90
14 3df — 78 — 70

a Reaction conditions: 1 (0.2 mmol), 2 (0.24 mmol), IPrPd(allyl)Cl (0.006 mmol), K2CO3 (0.3 mmol), H2O (2 mmol), toluene (1 mL) at 110 �C for 16 h
under Ar. b Reaction conditions: 1 (1.0 equiv.), 2 (2.0 equiv.), K2CO3 (3.0 equiv.), PEPPSI-IPr (3 mol%), 1,2-DME (0.25 M), 110 �C, 16 h. c Reaction
conditions: 1 (0.50 mmol), 2 (0.60 mmol), Cs2CO3 (0.75 mmol), SIPrPd(h3-1-t-Bu-indenyl)Cl (0.005 mmol), H2O (2 mL), THF (0.5 mL), 40 �C, 4 h.
d Reaction conditions: 1 (0.7 mmol), 2 (0.735 mmol), NaH (0.735 mmol), 130 �C (oil-bath temperature), 20 h.
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should be noted. Therefore, our method is a preparatively
useful extension of existing methodology of amide synthesis.
Conclusions

A general, efficient, green method of aromatic amides synthesis
from phenyl esters and aromatic amines under solvent- and
transition metal-free conditions using equivalent amounts of
NaH as a base was elaborated. Reaction and isolation proce-
dures are simple, robust, easily reproducible, and scalable. The
new method is characterized by high atom economy.
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