Polyphenolic compounds as protective agents against cisplatin-induced ototoxicity with molecular mechanisms and clinical potential
Abstract
Cisplatin remains a cornerstone in the treatment of various solid tumors due to its exceptional antineoplastic efficacy. However, its clinical utility is significantly constrained by severe adverse effects, with ototoxicity emerging as particularly problematic due to its potential to cause permanent hearing impairment and substantially diminish patient quality of life. Recent investigations into mitigating cisplatin-induced ototoxicity have identified natural polyphenolic compounds as promising protective agents, attributable to their diverse biological activities and potent antioxidant properties. This review critically examines the molecular mechanisms underlying cisplatin-induced cochlear damage and systematically evaluates recent advances in employing polyphenolic compounds as otoprotective interventions. Evidence indicates these bioactive molecules attenuate cisplatin-mediated hearing loss through multiple complementary pathways, including modulation of oxidative stress, inflammatory responses, and apoptotic cascades within the cochlear architecture. However, significant challenges, such as low bioavailability and potential interference with cisplatin's antitumor efficacy, hinder their clinical translation. Based on evidence from studies published between 2010 and 2025, with a focus on advances from the last five years, this review systematically outlines protective mechanisms while critically addressing current research limitations. It further proposes future directions, highlighting advanced drug delivery systems and innovative therapeutic strategies. These insights provide a robust mechanistic framework for the rational design and development of novel otoprotective strategies that preserve cisplatin's antitumor efficacy while minimizing its ototoxic potential.