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Precise spatiotemporal manipulation of particles in complex microfluidic channel networks (MCNs)

underlies numerous advanced applications, but remains constrained by the difficulty of rapidly translating

prescribed trajectories into manufacturable device designs. In this work, we introduce a modular deep

learning framework that overcomes these limitations by decomposing MCNs into standardized, reusable

functional modules with well-characterized fluidic and structural properties. For each module, a dedicated

neural network predicts the full spatiotemporal particle state—including position, velocity, and transit time

—under diverse flow conditions. A multi-module reconfiguration algorithm (MMRA) assembles these local

predictions into continuous, device-scale trajectories while rigorously preserving physical state continuity.

This approach enables deterministic port routing and precise spatiotemporal scheduling on “DUT” and

“grid” chips, with a mean absolute timing error below 0.031 s. Integrated into PathChip, our user-friendly

end-to-end design platform, the proposed approach enables users to specify target particle behaviors and

automatically generate optimized module sequences, geometries, and control parameters, producing

fabrication-ready device blueprints. Using this reverse design workflow, the integration of 5000 modules

can be completed in as little as 18 s. This work establishes a structurally scalable pathway toward

programmable, device-level spatiotemporal particle manipulation in microfluidics, with broad implications

for lab-on-a-chip automation, high-throughput screening, and adaptive microfluidic systems.

1 Introduction

Precise spatiotemporal manipulation of particles in
microfluidic systems underlies transformative advances in
biomedicine and chemical synthesis.1–3 By exploiting
microscale flow phenomena within microchannels, precise
spatial control over the motion of diverse particles, including
polymer monolayers,4 colloidal particles,5 vesicles,6 single
cells,7 and even bacteria,8 has been successfully achieved.
However, in complex microfluidic channel networks (MCNs),
particle trajectories encode not only spatial routing but also
timing information that directly determines downstream
functionality. From steering drug carriers through vascular-
like networks,9,10 orchestrating single-cell sequencing
workflows,11,12 to executing time-resolved reactions in droplet
microreactors,13,14 the ability to predict the position, velocity,

and arrival time of micro/nanoparticles with high fidelity
promises unprecedented control over biological and chemical
processes at the microscale.15 Yet, implementing complex,
user-defined control of particle spatiotemporal trajectories in
MCNs and translating them into channel geometries remains
a formidable challenge.

Conventional design utilizes numerical simulations,
demonstrating its advantages in nonlinear flow analysis and
facilitating iterative optimization of the equipment. However,
when dealing with complex, large-scale channel networks and
particle trajectories, traditional approaches are usually
computationally intensive, as they rely on computationally
intensive multiphysics simulations and empirical iterative
tuning.16–20 These approaches suffer from two limitations
when targeting complex global behaviors. Firstly, the complex
topological connections and coupling of local flow fields in
MCNs lead to the highly nonlinear behavior of particle flow,
which leads to expensive time cost and increased risk of non-
convergence.21–23 Additionally, translating a desired
spatiotemporal particle behavior (e.g., a specific sequence of
movements at defined times and locations24,25) into an
optimal device geometry and operational protocol is an ill-
posed, non-intuitive inverse problem. Consequently, the
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design of microfluidic systems for sophisticated particle
choreography is often slow, empirical, and limited in scope.

Deep learning (DL) has emerged as an emerging tool that
provides efficient methods for fast prediction, and assisting
in automated design exploration.26,27 Recent works
demonstrate capability of DL in predicting the mapping
relationship between complex flow fields and particle
behavior,28–30 or optimizing simple device components.31,32

However, these approaches are typically confined to forward
prediction, and struggle when confronted with the historical
state-dependence and long-range correlations inherent to
particle transport in complex MCNs.33,34 On the other hand,
the inability to explicitly embed the physical connection

between paths makes it difficult to predict and control the
movement of particles over long distances and long periods
of time.35 Therefore, there is currently a lack of a scalable
framework for holistically prediction and control of complex,
device-scale spatiotemporal particle trajectories. Furthermore,
while certain DL models facilitate inverse design for
rudimentary components36 or discrete outputs e.g. droplet
size,37,38 prevailing methodologies typically lack the
granularity and flexibility requisite for translating intricate
spatiotemporal path requirements into actionable device
specifications and operational protocols.39

Here, we introduce a novel modular modeling and
trajectory prediction strategy as shown in Fig. 1. We decouple

Fig. 1 Modular framework for precise particle trajectory prediction and trajectory-guided inverse structural design. a Schematic illustration of
particle motion along a prescribed trajectory within a microchannel network. b Schematic of prediction and reconstruction of particle trajectories
in a modularized network. c Schematic of automated inverse design of channel structures based on target trajectories.
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MCNs into a series of standardized, reusable single modules
with different fluidic or structural driving characteristics. The
specific flow paths of the particles within the channel
obtained using sheath flow focusing are shown in Fig. 1a. A
dedicated DL model predicts instantaneous spatiotemporal

particle motion information within each module under
varying actuation conditions. On this basis, a multi-module
reconfiguration algorithm (MMRA) then assembles these
module-level predictions into continuous, device-scale
trajectories, ensuring physical state continuity across

Fig. 2 Rapid dataset construction workflow for particle trajectory modeling. a Definition of input features, containing 20 parameters for
geometry, flow conditions, and particle properties. b Evaluation of uniformity and diversity of parameter sampling. c Generation of simulation and
experimental data.
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transitions (Fig. 1b). We experimentally validate the
framework on a “DUT” chip, demonstrating deterministic
routing to prescribed outlets and active spatiotemporal
planning enabled by precise delay control. In a grid-based
chip architecture, the framework achieves a mean absolute
timing error below 0.031 s. These capabilities are integrated
into PathChip, a user-friendly end-to-end platform, that
enables users to specify desired behaviors and automatically
generates optimized module sequences, geometries, and
operating parameters, producing fabrication-ready blueprints
(Fig. 1c). Using this reverse design workflow, the integration
of 5000 modules can be completed in as little as 18 s. This
work establishes a scalable and generalizable route toward
programmable, high-fidelity spatiotemporal particle control
across complex microfluidic architectures.

2 Results
2.1 Dataset generation

To enhance the generalization and predictive performance of
the neural network, we constructed a well-annotated and
feature-diverse dataset. A total of 20 input parameters were
selected to form a high-dimensional feature space,
encompassing microchannel geometry, flow conditions, and
particle properties (Fig. 2a). Detailed parameter definitions
and constraints are provided in Fig. S1, Table S1 and
Methods 4.4. The selected 20 parameters capture dominant
behaviors under low-Reynolds-number microchannel
transport. Particle diameter and density are treated as explicit
input parameters, allowing the learned mapping to capture
size-dependent migration and routing behavior within each
module. Factors such as flow regime transitions, fluid
rheology, and interfacial interactions were excluded in this
initial study due to their negligible impact within our
experimental domain. Using Latin hypercube sampling
(LHS), we generated 500 uniformly distributed samples
across the input space. The uniformity of the sample
distribution was evaluated by computing the normalized
minimum Euclidean distance between sample points40 (eqn
(1)), as shown in Fig. 2bi.

Dij ¼ xi − xj
�� ��

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
k¼1

xik − xjk
� �

2

vuut (1)

dmin
i ¼ min

j≠i
Dij

where Dij denotes the Euclidean distance between the i-th

and j-th samples, dmin
i is the minimum distance from the i-th

sample to all others, xi represents the i-th sample, and d is
the feature dimensionality. As shown in Fig. 2bi, the
normalized minimum distances are centered around 0.5,
indicating a uniformly distributed sampling across the
parameter space. We further assessed the distribution of
geometric and flow configurations. As shown in
Fig. 2bii and iii, the three representative channel types occur

in approximately equal proportions, and the inlet (1), none
(0), and outlet (−1) flow states across the three branches are
evenly represented. This balanced sampling ensures
comprehensive coverage of particle dynamics across diverse
structural and flow conditions.

A complete dataset was constructed using both numerical
simulations and particle-tracking experiments (Fig. 2c). We
developed a coupled laminar flow-particle transport
numerical model to simulate particle motion under 500
distinct parameter configurations. The validity of the
numerical model is detailed in Note S1. A subset of the
simulation cases, matching the physical properties of
polystyrene (PS) microparticles, was selected and perturbed
to generate 100 additional configurations for experimental
data collection. This 5 : 1 ratio between simulated and
experimental samples ensured a balanced design between
model-driven inference and empirical observation. In total,
we obtained 6000 independent particle trajectory samples,
each with a unique combination of channel geometry, flow
conditions, and particle properties. For each case, four
output features were extracted: outlet label OL, particle
position ratio OR at the outlet cross-section, particle

instantaneous velocity V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VX

2 þ VY
2

p
at the outlet, and

particle migration time T from inlet to outlet. Detailed
definitions of these four features are provided in Note S2.
This dataset forms the foundation for neural network
training, supporting robust spatiotemporal trajectory
prediction of particles in complex microchannel
environments.

2.2 Single-module for particle motion prediction

In branched networks, the local flow distribution,
hydrodynamic resistances, and geometric variations
collectively determine how particles migrate across the
device.41 Accurate, module-level trajectory prediction thus
allows designers to rationally position reaction chambers,42

sorting units,43 or outlet collectors44 based on the expected
particle pathway. For biological or chemical workflows that
require controlled routing, such as size-based cell
enrichment,45 vesicle separation,46 and sequential reagent
exposure,47 trajectory prediction can achieve precise control.

To accurately predict particle motion within single
module, we designed, trained, and optimized four deep
neural network models. These models map local flow field
conditions, channel geometry, and particle properties into
four outputs related to spatiotemporal control of particle
trajectories (see Note S3 for model specifications). They
contain: (i) the downstream branch selected by the particle,
defined as outlet label OL, (ii) its lateral position at the
module exit, defined as the position of the particle at the
outlet OR, (iii) its instantaneous velocity V, and (iv) the transit
time through the module, defined as migration time T. These
four neural networks are collectively referred to as the
particle motion prediction model (PMPM), as illustrated in
Fig. 3a. Leverage these deep learning models, we can obtain
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the exit descriptor of a single module to represent the
movement state of particles in each module, while ignoring
the movement information of particle trajectories inside the
module. This simplification greatly reduces the global data
volume requirements and prediction time, thus enabling the
need for accurate prediction of complex, long-distance
particle trajectories to be met. In addition, the flexibility of
module assembly also makes it possible to automate the
inverse design of complex, large-scale microchannel
networks.

80% of the dataset was used for model training, and the
remaining 20% was reserved for testing. The coincidence
degree between the particle outlet OL prediction and the
experimental data of the trained model on the test set was
96.9 ± 0.5%, with standard deviation calculated over five
independent train–test splits. The confusion matrix (Fig. 3bi)
shows strong agreement between predicted particle outlet

choice and the experimental data, indicating high fidelity in
outlet selection for particles. For OR, V and T prediction tasks,
the parity plots exhibit a near-diagonal trend (Fig. 3bii–iv),
indicating that the OR, V and T of the particles at the outlet
coincide well with the experimental data. To further evaluate
the accuracy of particle motion state prediction, we visualized
the classification probability, that is the probability of which
downstream branch the particle chooses, distribution on the
test set and marked the point at which the particle enters the
wrong branching channel (Fig. 3c). For OR, V and T
prediction tasks, we computed the coefficient of
determination (R2), root-mean-square error (RMSE), and
mean absolute error (MAE) (Fig. 3d; detailed values in Table
S3). The predicted probabilities exhibit clear separation
among different outlets, with stable performance and no
evident outlet bias. Misclassifications is often near adjacent
channel boundaries or close to branching inlets where subtle

Fig. 3 Efficient prediction of particle dynamics using the residual neural network. a Schematic of the neural network infers particle behavior
within a single module based on predefined input features. b Visualization of classification and regression performance on the test set, including
the confusion matrix (i) and parity plots (ii–iv). c Predicted probability distributions for three outlet labels; blue markers indicate misclassified
samples. d Regression performance metrics on the test set, including R2, RMSE, and MAE. e Experimental images of particle trajectories under
various parameter configurations. (i) straight type-1 channel, (ii) single curved type-2 channel, (iii) double curved type-3 channel. f AE between
model predictions and experimental measurements, used to assess prediction accuracy.
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flow variations can influence particle routing. In practice, the
proximity of particles to these areas should be avoided as
much as possible (misclassification examples show in Fig.
S4). For regression tasks, prediction errors of OR and T
appear more scattered. The OR shows relatively high RMSE
(0.114), reflecting higher variability, but had no significant
effect on the prediction.

To evaluate the accuracy of model predictions, we
performed particle focusing experiments, the experimental
platform and method are shown in Fig. 3e, Video S1 and
Methods 4.3. Within the parameters of the experiment, the
particles were successfully focused at the specified position.
Particles located at the center of the cross section of the
particle flow were selected as targets, and the corresponding
position, velocity, and time measurements were extracted.
Based on the configured experimental parameters, the PMPM
model was employed to predict the corresponding OR, V, and
T values, and the predictions were compared with the
experimental results. The corresponding absolute errors (AE)
are shown in Fig. 3f. In comparison, the prediction accuracy
of V, and T is higher than OR, but overall it remains below
0.2, show the prediction effect is better. The MAEs for OR, V,
and T were 0.098, 0.006 m s−1, and 0.008 s, respectively. The

largest AE was observed in OR, reaching up to 0.16, and
exhibiting sensitivity to both flow rate and channel type.
Under low flow conditions and in type-1 channels (straight
type channel), particle paths were more deterministic due to
more accurate predictions. In contrast, type-3 channels
(double curved type channel) showed frequent nonlinear
deviations, reducing spatial prediction precision. Specifically,
the MAE of OR was 0.065 for type-1 channels and 0.134 for
type-3 channels, highlighting a significant performance gap.
In practice, type-1 channels are recommended as primary
structural templates or optimization targets for inverse
design tasks requiring high trajectory fidelity.

Discrepancies in the predictions likely arise from
nonlinear couplings among input features, such as channel
asymmetry, local shear gradients, or particle–fluid
interactions.48 These nonlinear interactions are inherent to
inertial microfluidics,41 and hold well in the range of laminar
flow (Re < 10) considered in this work. The regions where
errors arise are consistent with known to be prone to
perturbations in inertial microfluidics, such as cross-
sectional expansions, turning junctions, or sharp geometric
perturbations. These errors belong to the inherent errors of
model prediction, and should be minimized in the practical

Fig. 4 Effect of dataset size on model performance. The effect of dataset size on prediction performance is evaluated based on four criteria,
namely a classification accuracy, b R2, c RMSE, and d MAE.
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application of these vulnerable regions of prediction, or
additional targeted modeling of these regions to narrow the
error.

Finally, we investigated the effect of dataset size on model
accuracy. Models were trained on incrementally larger
subsets ranging from 100 to 6000 samples, with each
configuration repeated five times. For evaluation the accuracy
of model training, 20% of the original dataset was randomly
selected as a consistent test set. The resulting performance
curves are shown in Fig. 4. For OL, T, and V, model accuracy
plateaued once the training set exceeded 1000 samples,
reaching performance comparable to that of the full dataset.
In contrast, prediction of OR exhibited a stronger dependence
on dataset size, indicating that high-resolution spatial
descriptors require a larger sample pool to enable precise
trajectory reconstruction.

2.3 Multi-module reconstruction of particle trajectory

To extend trajectory inference to global microchannel
networks and module-level prediction to device level
microfluidic networks, we developed a multi-module
reconfiguration algorithm (MMRA). The MCNs were
decomposed into standardized functional discrete single-
module with well-defined geometric and hydrodynamic
characteristics, each enabling accurate local prediction of
particle motion. By concatenating each modular particle
motion data predicted with high accuracy, the modular
particle motion data can be reassembly into long trajectories
in a complex MCNs. MMRA was implemented within the
PathChip framework and applied to multi-branch channel
networks, as illustrated in Fig. 5a. By abstracting and
modularizing the network, MMRA enables efficient global
trajectory inference across complex channel topologies.

In order to realize efficient transmission of particle
motion data, we use mathematical language to transplant
MCNs to a computer for processing. The unified digital
structure and equivalent circuit model of the MCNs
architecture is constructed for global inference, as shown in
Fig. 5b. Flow distribution across branches is estimated using
a fluid–circuit analogy. Each module in the MCNs is assigned
a unique identifier, and the entire network is encoded as an
undirected, unweighted adjacency matrix. Leveraging the
fluid–electrical analogy,49 Hagen–Poiseuille's law (eqn (2)) is
approximated by Ohm's law (eqn (3)) to rapidly estimate
pressure-driven flow across the network (see Methods 2.8 for
implementation details). Based on the adjacency matrix, an
equivalent electrical circuit of MCN is established, where
resistors and wires represent fluidic connections; resistance
corresponds to hydrodynamic resistance, and circuit nodes
represent fluidic junctions. The fluid inlet node is connected
to the positive terminal of a voltage source, while outlets are
grounded, emulating a boundary condition of zero pressure
(0 MPa).

Δp = p+ − p− = QRH (2)

V = V+ − V− = IRE (3)

MMRA achieves progressive expansion of particle
trajectories by iteratively propagating particle state
predictions between connected modules. At each step, the
predicted particle motion results outputs from the current
module—including the outlet label OL, particle position OR at
the outlet, instantaneous velocity V, and transit time T—are
passed as the particle entry conditions for the downstream
module. Among these, OL and OR are critical in determining
the subsequent path selection, ensuring continuity of particle
state across the MCN. As illustrated in Fig. 5ci, MMRA
initiates from a specified inlet module, infers the next
module index based on the adjacency matrix, the digital
connection map of the modules, and OL, and maps the
current OR to the inlet position IR of the subsequent module.
This process iterates until the particle reaches a designated
outlet, completing the cross-module spatiotemporal trajectory
construction (Fig. 5cii). The reconstructed module sequence
is then reassembled into the original network layout and
rendered via PathChip for global trajectory visualization
(Fig. 5ciii). MMRA does not interfere with intra-module
predictions but functions as a coordination framework for
information propagation and path logging, which are
assembled into a continuous trajectory that ultimately
outputs a particle state sequence across modules. By
preserving both spatial and temporal information, the
method enables efficient evaluation of particle routing,
cumulative transit time, and arrival location across complex
microfluidic circuits. Experimental results indicate that a
five-module trajectory prediction takes 0.631 ± 0.051 s on
average (n = 10), demonstrating the framework's efficiency
and scalability for rapid trajectory inference in MCNs.

To validate the effectiveness of multi-module trajectory
inference, we fabricated a microfluidic chip based on the
abstracted MCNs show in Fig. 5a, and conducted particle
tracking experiments. Using sheath flow focusing, we focused
a suspension of 1 μm PS particles at the center position IR =
0.4 and injected them through a straight channel into MCNs.
As shown in Fig. 5d and Video S2, the trajectory of a
representative particle followed the path node 1 → 2 → 6 → 7
→ 5, eventually flows out through outlet 2. This trajectory is
consistent with the MMRA-based prediction in Fig. 5ciii,
confirming the accuracy of MMRA. To further demonstrate
trajectory controllability, we designed and fabricated a
channel shaped as the letters “DUT”, composed of multiple
non-standard modules. The inter-module connections were
abstracted via geometric similarity and mapped to
approximate canonical module types. Under the MMRA
framework, iterative adjustment of inlet parameters enabled
directional guidance of particle motion. As shown in Fig. 5e,
particles were focused at IR = 0.5 and successfully guided
through the letters “D”, “U”, and “T” under the prescribed
flow conditions, exiting from the tail of the “T.” The
experimental trajectory aligns with the MMRA prediction (see
Video S2), demonstrating the predictive capability of PMPM
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Fig. 5 Spatiotemporally accurate module-by-module particle trajectory prediction and reconstruction via MMRA. a The MCN was abstracted and
segmented into labeled modules. b Digitization and circuit-based modeling of the channel. c: i Iterative inference using the MMRA, iteratively
predicted from inlet to outlet. ii Module-level trajectory results. iii Global trajectory reconstruction and visualization. d Experimental validation of
multi-module trajectories. e Controlled particle trajectories in “DUT”-shaped chip.
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in non-standard structures and the effectiveness of MMRA in
controlling particle motion within physical microfluidic
chips.

2.4 Particle trajectory and delay control

In chemical and biological assays, precise temporal
coordination and spatial sequencing are critical, such as
coordinating multi-step reactions,50 staged reagent
exposure,51 or timed delivery,52 requiring tight control over
the delivery path and transmission delay of reagents or
stimuli.53–55 To explore this potential, we leveraged the
developed neural network model PMPM to simulate delay-
based control strategies for intrachannel particles transport.
PMPM predicts the transit time of particles in the module,
and is extended to the complete long trajectory time in the
overall channel by MMRA. Different particle trajectories
correspond to different flow times. Therefore, by controlling
the particle trajectory, it is possible to control the transit time
of particles in the channel. As a proof of concept, a 5 × 5
microfluidic grid chip as shown in Fig. 6a was designed to
achieve time-delay control of particles.

Ensuring that the predicted time of particles in the
module is consistent with the transit time of particle in the
actual experiment module is the basis for achieving accurate
prediction of the complete trajectory time. Due to structural
discrepancies between module junctions in the grid
microchannel and standard configurations in the training
dataset, directly applying the original time-prediction model
will introduce systematic errors. Thus, we performed residual
correction on the module transit time prior to global
trajectory prediction.56 The true transit time Tt and the
model-prediction time Tp under 50 uniform sampling flow
conditions were used to train a lightweight neural network to
model the nonlinear residual relationship between Tt and Tp.
The sampling module in the actual experiment is shown in
Fig. 6b, and the prediction time and real-time sampling are
shown in Fig. 6c. This network takes the original prediction
Tp as input and outputs the residual R = Tt − Tp, refine time
prediction.

To evaluate time-delay control accuracy based on
trajectory prediction, we predicted both the particle paths
and transit times in grid microchannel (Fig. 6d). The model
first estimated the uncorrected transit time Ti for each

Fig. 6 Precise delay control of particle transport via trajectory prediction and residual correction. a A 5 × 5 grid network for time-delay control
proof of concept. b Cross-shaped channel modules in real experiments. c Comparison plots between predicted transit time Tp and measured
ground truth Tt across varying flow conditions. d Predicted particle trajectories and cumulative transit time Tj under different inlet configurations.
e Actual particle paths and measured cumulative time Tjtrue. f Comparison between corrected predictions Tjcorr. and measured values Tjtrue.

Lab on a Chip Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/2

8/
20

26
 8

:0
7:

26
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5lc01185j


Lab Chip This journal is © The Royal Society of Chemistry 2026

module (where i denotes the module index), and computed

the total uncorrected trajectory time Tj ¼
PNj

i¼1
Ti, where j

indexes the trajectory and Nj is the number of modules in the
j-th path. A trained neural network was then applied to
correct each module-level time prediction, yielding corrected
transit times Ticorr. and total corrected trajectory times

Tjcorr: ¼
PNj

i¼1
Ticorr:. As shown in Fig. 6e, we experimentally

replicated the predicted flow settings, recording the actual
particle trajectories and their corresponding total transit
times Tjtrue. Video documentation is provided in Video S3.
Comparison between Tjtrue and Tjcorr. yielded absolute
residuals RAcorr. = |Tjtrue − Tjcorr.|, shown in Fig. 6f. The MAE

between predicted and the actual data decreased significantly
from 0.932 s (uncorrected) to 0.031 s after correction, with
the maximum RAcorr. limited to 0.0965 s. These results
confirm the robustness of accurate delay control using
residual correction and demonstrate the ability of the
developed model to achieve high-precision delay control. By
linking spatiotemporal trajectory prediction with physical
execution, this framework opens new opportunities for
precise temporal coordination in microfluidic systems.

2.5 Inverse design automation

Finally, we propose the automated inverse design (AID)
approach (see Fig. S5 for workflows) rapidly produces initial
structural layouts, offering a scalable and efficient solution

Fig. 7 Automated inverse design of microfluidic structures to achieve target particle trajectories. a Adjacency matrix. b Flow chart of the
algorithm for the optimization of channel structure parameters. c Fabrication-oriented structural design based on optimized parameters. Final
layouts are adjusted for manufacturability before microfabrication. d Experimental verification of the transport of particles along a specified path. e
The number of modules and the corresponding computation time of the automatic inverse design algorithm.
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particularly suited for early-stage development or applications
lacking design priors. We extended the PathChip framework
by incorporating an AID module with optimization capability.
The assumptions underlying this inverse design process are
detailed in Note S4. Given a predefined flow condition and a
target trajectory, the system autonomously generates a
channel configuration that satisfies the design objectives.
Two key components are required to support this
functionality: an adjacency matrix module (Fig. 7a) and an
equivalent circuit analysis module (see Fig. S6 for circuit
model configuration). The adjacency matrix ensures
consistency in module indexing during trajectory
propagation. The circuit module, based on fluid–circuit
analogy, reformulates the microfluidic network as a solvable
Kirchhoff current–voltage system. This allows the program to
directly ingest flow-related parameters and compute global
flow rates across branches internally. The Kirchhoff current
and voltage formulations corresponding to the adjacency
matrix in Fig. 7a are provided in Table S4.

To enable automated path planning towards a target
particle trajectory or specified outlet condition, we
implemented a particle swarm optimization (PSO) algorithm
to iteratively tune microchannel structural parameters. As
illustrated in Fig. 7b, the optimization objective is defined by
the discrepancy between the predicted path and the target
trajectory, quantified as the difference between the total path
length and the number of sequentially matched nodes (eqn
(4)). This objective reflects the alignment accuracy between
the generated and desired trajectories.

Objective Function = NT − NM (4)

Here, NT denotes the total number of nodes in the predicted
path, and NM is the number of sequentially matched nodes
with the target trajectory. Based on the predefined adjacency
matrix, structural nodes are grouped into odd-numbered
nodes (1, 3, 5, 7, 9) and even-numbered nodes (2, 4, 6, 8, 10)
for parameter optimization, with nodes 11–14 designated as
outlet nodes and node 15 as the inlet. Optimization is
performed jointly on the geometric deflection angles A1k and
A3k at each node group, along with the global channel widths
Wik of both groups (i = 1, 2, 3, 4, k = 1, 2, 3…Nj), where i
represents branch indices and k is the node index along the
trajectory of length Nj. At each iteration, a breadth-first
search (BFS) algorithm identifies the optimal path under
given flow conditions, ensuring that the particle reaches the
designated outlet from the inlet. The final optimized
channel layout is shown in Fig. 7c. To validate the design
outcome, a photomask was generated using the optimized
parameters, followed by chip fabrication and trajectory
experiments. Results demonstrate that particles, when
initialized at the designated IR, consistently enter the
desired outlet, in agreement with the predicted path
(Fig. 7d, Video S4), confirming the effectiveness of the
proposed inverse design framework in both structural
synthesis and trajectory control.

To demonstrate the design efficiency of AID, we integrated
10 to 5000 modules on the chip without prior knowledge,
and for each condition, the AID algorithm was run 10 times.
The design time of the AID algorithm and the corresponding
number of modules are shown in Fig. 7e. The design time of
the AID algorithm increases roughly linearly with the
increase of the number of modules. Detailed data are
provided in Table S5. In the case of running 5000 modules,
the average computation time of AID algorithm is 18.821 s,
which indicates that the algorithm has high design efficiency
in the face of complex large-scale module integration.

3 Discussion

This study presents an integrated framework that combines
DL with modular modeling to enable high-precision
spatiotemporal prediction, control, and automated structural
optimization of particle transport in MCNs. By decomposing
complex channels into functional modules, and PMPM is
constructed to accurately predict particle routing, outlet
position, velocity, and transit time within MCNs.
Subsequently, MMRA then assembles global trajectories from
local predictions, supporting dynamic control across scales.
Residual correction further improves time prediction
accuracy, making the framework suitable for multi-step
reactions and delivery scheduling. Finally, by integrating the
trajectory prediction with optimization, we achieved
automated inverse design of complex microchannel
structures under target trajectory constraints. Using this
reverse design workflow, the integration of 5000 modules can
be completed in as little as 18 s.

The DL framework developed in this study demonstrates
architectural scalability and device-level adaptability within
the microfluidic regimes evaluated. The scalability claimed in
this work refers to structural scalability achieved through
modular assembly rather than generalizability across all
possible microfluidic conditions. While its current predictive
scope is limited to laminar flow regimes, canonical module
geometries, passive particle transport, and rigid particles, the
modular framework is inherently extensible. Specifically,
additional physical effects—including viscosity variations,
surface interactions, multiparticle coupling, and complex
channel geometries—can be systematically incorporated as
new training data and corresponding module models become
available. Moreover, the framework naturally supports
extension to deformable objects through the integration of
deformation-related descriptors. Built upon particle-like
dynamics, the framework extends beyond synthetic
microparticles (e.g., drug carriers57) to other point-like
entities such as droplets,58 bioactive particles such as cells,59

exosomes,60 vesicles61 and bacteria,8 and even micro/
nanorobots.39,62,63 The system's modular design also
facilitates integration with broader automation platforms,
such as droplet generation systems for trajectory prediction
under varying conditions37 or cell-sorting devices for
automated routing and precise allocation.64 These diverse
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applications demonstrate the approach's adaptability and
translational potential across microfluidic domains.

4 Methods
4.1 Materials

Microfluidic channels were fabricated using
polydimethylsiloxane (PDMS) due to its high optical
transparency, making it suitable for real-time imaging.
Quartz substrates were used as the chip base, and SU-8 2075
was employed as the negative photoresist. Polystyrene (PS)
microspheres with diameters of 1 μm, 5 μm, and 10 μm and
a density of 1.05 g cm−3 were used as model particles for both
dataset generation and validation experiments. Anhydrous
ethanol (density: 0.79 g cm−3) served as the carrier fluid. PS
particles were prepared at a concentration of 50 mg mL−1 in
ultrapure water, with a coefficient of variation (CV) below
3%. Prior to introduction into the chip, the PS suspension
was diluted 1 : 10 (v/v) with ethanol. To minimize aggregation
and prevent channel blockage, 10% (v/v) Tween-20 was added
to the diluted solution and sonicated to ensure uniform
dispersion. All microchannels were rendered hydrophobic to
prevent particle adhesion to PDMS surfaces.

4.2 Mcirofluidic chips fabrication

Microdevices were fabricated using standard soft lithography
techniques. A negative photoresist SU-8 mold was first
patterned onto a quartz substrate via photolithography.
PDMS prepolymer and curing agent were mixed at a 10 : 1
mass ratio, thoroughly degassed under vacuum, and cast
onto the SU-8 mold. The mixture was cured at 110 °C for 90
minutes to form an elastic PDMS layer with embedded
rectangular microchannel structures. Inlet and outlet ports
were punched into the cured PDMS at designated locations.
The PDMS layer and a glass substrate were then surface-
activated using an oxygen plasma treatment system (Plutovac,
PLUTO-F) and irreversibly bonded to form sealed
microchannels. The assembled chip was further cured at 85
°C for 90 minutes to enhance bonding strength and
structural stability.

4.3 Particle trajectory experiment

A syringe pump (LongerPump, LSP02-1B) was used to inject
the diluted PS microsphere suspension and anhydrous
ethanol into designated inlets of the microfluidic chip to
establish a stable flow field. A high-speed camera (Revealer,
AE120M, 2000 fps) mounted on an inverted biological
microscope (Murzider, MSD351) was employed to capture
particle motion. Video recordings were acquired using the
camera's dedicated image acquisition software for image
processing and particle trajectory extraction. A schematic of
the experimental setup is provided in Fig. S7.

4.4 Input feature limitation

To account for external factors influencing particle
trajectories and accommodate the geometric variability in
conventional microfluidic chips, a total of 20 parameters were
selected across three domains: flow conditions, channel
geometry, and particle properties. These parameters include
inlet velocity, inflow/outflow configurations, channel width,
inter-channel angles, particle diameter, and particle density.
The parameter space considered in this study corresponds to
single-phase Newtonian microflows operating in the low-
Reynolds-number laminar regime (Re < 10). Under these
conditions, fluid viscosity and flow type remain fixed and thus
do not introduce independent variability in particle dynamics.
The current PathChip framework is validated within a well-
defined domain of laminar microflows, consistent with the
operating range of the experimental platform. Certain
parameter combinations may result in physical interference
between channels or generate inconsistent flow states due to
randomness of sampling. Therefore, we introduce constraint
formulations to avoid infeasible configurations during
randomized parameter sampling.

X4
i¼2

1 Li¼−1f g ≥ 1 (5)

Here, Li ∈ {−1, 0, 1}, i = 2, 3, 4. Eqn (5) enforces physically
valid flow conditions within each channel module by
preventing nonphysical scenarios such as all branches
exhibiting inflow or the complete absence of connected
channels. Geometric constraints, summarized in eqn (6), are
applied to restrict incompatible channel configurations,
ensuring that all designed structures are physically realizable
and free of boundary interference.

(6)

4.5 Numerical simulation

Numerical simulations were employed to emulate structural
variations in microfluidic channels and to investigate how
changes in channel parameters influence particle trajectories.
COMSOL Multiphysics was selected as the simulation
platform. The numerical model integrates two coupled
modules—laminar flow and particle tracing for fluid flow—to
simulate particle trajectories within microchannels. The
laminar flow module is governed by the incompressible
Navier–Stokes equations (eqn (7)):

ρ(u·∇)u = ∇·[−pI + K] + F
ρ∇·u = 0

K = μ(∇u + (∇u)T) (7)

where ρ is the fluid density; u is the velocity field (with x and
y components); p is the pressure; μ is the dynamic viscosity;
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F is the body force per unit mass (gravity neglected); and K
represents the viscous stress tensor arising from velocity
gradients. The identity matrix I is used to express the
pressure as a scalar tensor.

The particle tracing module follows the Newtonian
equations of motion (eqn (8)):

d mpv
� �
dt

¼ FL þ FD

FL ¼ ρ
rp4

D2 β βG1 sð Þ þ γG2 sð Þð Þn

FD ¼ 1
τp

mpM u − vð Þ

(8)

where mp is the particle mass, v is the particle velocity vector,
and t is time. FL denotes the lift force, computed based on
fluid–particle interactions. Additional terms include
parameters such as particle radius rp, characteristic length D
(e.g., the distance to nearby walls or interfaces), and gradient-
related coefficients β and γ. G1(s) and G2(s) are dimensionless
functions dependent on wall-normalized distance, while L
and P(n) describe the particle's proximity and projection onto
the wall-normal vector, respectively. Remaining coefficients
in eqn (8) are derived from auxiliary expressions provided in
eqn (9).

τp ¼ ρpdp
2

18μ

M ¼ 1

1 − 9
16

α þ 1
8
α3 − 45

256
α4 − 1

16
α5

1 − P nð Þð Þ þ 1

1 − 9
8
α þ 1

2
α3

P nð Þ

α ¼ rp
L

The default fluid properties from the COMSOL materials
library were used to define the flow domain. Channel
geometries were constructed in external CAD software and
directly imported into the simulation environment. Within
the laminar flow module, inlet and outlet boundaries were
specified; inlet flow velocities were assigned based on
sampled flow parameters, while a pressure point constraint
of 0 MPa was applied at the outlet. In the particle tracing for
fluid flow module, inlet 1 was defined as the particle
injection boundary, with ten particles uniformly introduced
per inlet. All simulations were performed under dilute
particle conditions, where particle–particle interactions and
particle-induced flow perturbations are negligible. The model
is therefore applicable to passive, single-particle transport in
laminar microfluidic flows. Particle–wall interactions were
configured as adhesive, and particle properties—including
size and density—were assigned based on sampled values.
Drag and lift forces were included in the force model. A
steady-state solution was first obtained for the flow field,
followed by a transient simulation of particle trajectories.
The resulting outputs included particle paths, velocities, and
transit times within the microfluidic domain.

4.6 Fluid–circuit analogy

In drawing an analogy between microfluidic channels and
electrical circuits, the correspondence between hydraulic
resistance and electrical resistance must be clarified with
respect to their governing factors. The hydraulic resistance
RH of a rectangular microchannel is given by eqn (10):

RH ¼ 12ηL

wh3 1 − h
w

192
π5

X∞
n¼1;3;5

1
n5

tanh
nπw
2h

� � ! !

where η is the dynamic viscosity, L is the channel length, w
and h denote the channel width and height, respectively, and
n is an odd positive integer representing the harmonic order
in the infinite series. In practice, the series converges rapidly,
and only a limited number of terms are needed to achieve
sufficient accuracy.

To simplify eqn (10), a geometric coefficient Cg can be
introduced, yielding eqn (11):

RH ¼ Cgη
L
A2

where A is the cross-sectional area of the channel.
Analogously, the electrical resistance RE of a circuit

element is defined as in eqn (12):

RE ¼ ρE
l
A

where ρE is the resistivity and l is the conductor length.
Comparing eqn (11) and (12) reveals that RH ∝ L/A2, RE ∝ l/A.
Therefore, when mapping microfluidic flow resistance onto
its electrical counterpart, both the channel length L and
cross-sectional width w must be simultaneously considered.
Based on the equivalent circuit, the current Ii in each branch
can be computed and interpreted as the corresponding
volumetric flow rate Qi in the fluidic channel (with i denoting
the branch index), enabling the determination of inlet
velocities at each junction.

4.7 Design aids

We developed a MATLAB-based application, PathChip, which
integrates both particle trajectory prediction and
reconstruction algorithms into a unified platform. The
application provides a visual interface to explore predicted
trajectories alongside their corresponding structural
parameter sets, and enables interactive module
reconfiguration by adjusting design parameters of individual
channel units. A demonstration of the user interface is
provided in Fig. S10.

PathChip comprises the following core functionalities:
initialization, parameter configuration, parameter generation,
visualization window, trajectory output, visualization utilities,
and data export. The initialization module includes network
retraining, transfer learning, data import, save path selection,
and training execution, enabling either full retraining or fine-
tuning of the embedded neural network models with

(9)

(10)

(11)

(12)
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additional data. The parameter configuration module
provides schematic illustrations and configurable ranges for
each structural parameter to support user comprehension
and control. The parameter generation module allows both
manual and automated parameter design, including batch
generation, user-defined constraints, and channel shape
customization for automated design, as well as control of
inlets and outlets. The visualization window renders the
predicted particle trajectories within the corresponding
channel geometries. The trajectory output module displays
numerical results of the predictions and includes
functionality for animation generation to support post-
analysis. Visualization utilities facilitate the overlay and
comparison of experimental and simulated trajectories, as
well as integration of trajectories generated through manual
or automated design, allowing for external data import and
dynamic animation rendering. Finally, the export module
supports exporting parameter tables and visualization
snapshots for downstream reporting or analysis.
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