Design of DyIII-based single-ion magnets and polynuclear single-molecule magnets based on an electrostatic strategy
Abstract
Designing DyIII-containing single-ion magnets (SIMs) and single-molecule magnets (SMMs) based on a symmetry strategy has been extensively employed. To date, numerous SIMs and SMMs have exhibited high effective energy barriers (Ueff), high blocking temperatures (TB) and large coercive fields in the hysteresis loops, with one SIM achieving a TB (80 K) value above the liquid-nitrogen temperature. Interestingly, the magnetic relaxation behavior of some high-performance SIMs and/or SMMs can also be interpreted from an electrostatic perspective. Although the coordination geometries of DyIII in most complexes with high SIM/SMM performance exhibit high symmetry, many complexes with DyIII located in the low symmetrical coordination geometries also exhibit remarkable SIM/SMM performance. This phenomenon can be explained from the electrostatic perspective. However, to the best of our knowledge, few reviews have specifically addressed this aspect. In this review, we first provide an overview of the electrostatic mode, followed by a detailed discussion of representative Dy-SIMs and Dy-SMMs from an electrostatic perspective, and finally, we present conclusions and prospects of the electrostatic strategy for designing Dy-based SIMs and/or SMMs.

Please wait while we load your content...