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An efficient removal mechanism for different
hydrophilic antibiotics from aquatic environments

by Cu—Al-Fe—-Cr quasicrystalsy
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The work studied the adsorption properties and mechanism of Cu—Al-Fe—Cr quasicrystals (QCs) for the
adsorption of ibuprofen (IBU), tedizolid phosphate (TZD), and sulbactam sodium (SAM) for the first time.
The experimental results showed that quasicrystals were good adsorbents with great potential. The
structure, surface morphology, and elemental composition of QCs were investigated by XPS, XRD, SEM,

EDX, particle size, DSC-TG, and FTIR. The adsorption pH, kinetics, thermodynamics, and isotherms of

IBU, TZD, and SAM in QCs were systematically studied. QCs had good adsorption performance for
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antibiotics, and the adsorption capacities of IBU, TZD, and SAM were 46.964, 49.206, and 35.292 mg g~*

at the concentration of 25 mg L™, respectively. The surface charge and hydrophobicity of QCs were
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1. Introduction

Antibiotics are widely used in treating human and animal
infections due to their unique antibacterial properties.*
However, since most antibiotics are challenging for organisms
to fully digest, they and their metabolites are discharged into
the environment through excretions and urine.>® Even though
antibiotic concentrations are often detected at trace levels in the
environment, they can still induce antibiotic resistance genes at
a low concentration.* It can enhance the resistance of bacteria
to drugs and have great hidden dangers for the evolution of the
bacterial community structure.® Moreover, antibiotics may pose
a huge threat to aquatic organisms such as fish when accu-
mulated to high concentrations, because they have the charac-
teristics of low biodegradability, high persistence, and easy
bioaccumulation.®” Therefore, antibiotics are considered as
a new type of worldwide pollutants, and effective and sustain-
able water treatment technologies are urgently needed.?
Ibuprofen (IBU), one of the most widely sold antibiotics in
the world, is a non-steroidal anti-inflammatory drug, mainly
used as an anti-inflammatory, analgesic, and antipyretic.’
However, according to American Time, long-term use of IBU can
cause kidney failure. Sulbactam sodium (SAM) has a good effect

“School of Chemical Engineering, University of Science and Technology Liaoning,
Anshan 114051, PR China. E-mail: z13303064@163.com; asatsky@163.com; astxx@
163.com

School of Mining Engineering, University of Science and Technology Liaoning, Anshan,
PR China. E-mail: shujuandai@163.com

+ Electronic  supplementary
10.1039/d1ra08095d

information  (ESI) available. See DOI:

© 2022 The Author(s). Published by the Royal Society of Chemistry

affected by changing pH, thereby affecting the adsorption performance of QCs. The main driving forces
of adsorption included electrostatic force and hydrophobicity.

on respiratory infections—inhibiting Staphylococcus, Escher-
ichia coli, Haemophilus, and other bacteria.”** However, it may
cause allergic reactions to some people, rash, asthma, palpita-
tions, and even anaphylactic shock.”” Tedizolid phosphate
(TZD) is a new anti-bacterial infection drug developed by Cubist
Pharms, Inc. is an inhibitor of protein synthesis with a long
half-life.** It plays an antibacterial role by inhibiting the
synthesis of bacterial protein, mainly used in treating Gram-
positive bacterial infection.”* The hydrophilicity of these three
antibiotics is quite different, so these three antibiotics were
used to study the influence of hydrophilicity on the adsorption
of materials to be studied in the work.

Removing antibiotics efficiently and environmentally is
a challenge. Currently, mainly microbial-based treatment
systems are insufficient to remove antibiotics with low
degradability, high solubility, and complex molecular structure
from wastewater.”> Therefore, scientists have developed elec-
trochemical oxidation, chemical reduction, nanofiltration
membrane, electrocoagulation, and adsorption methods to
separate antibiotics from wastewater.'® Adsorption refers to the
accumulation or attraction of adsorbate molecules on the solid
surface when the adsorbate contacts the adsorbent surface. The
adsorption method is widely used because of its simple opera-
tion, strong flexibility, low cost, strong reusability, and wide
application range.®” Finding a suitable adsorbent is vital for
adsorption. Metal-based composites have a high adsorption
efficiency, fast adsorption speed, high recovery, and strong
reusability, which are the hotspots of recent research.'®' For
example, Linjie Wang et al. prepared ZnO-porous carbon (ZnO-
C) composites using MOF-74 (Zn) as a precursor. It has high
adsorption performance for organic pollutants in wastewater
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and good stability and reusability after multiple cycles of
operation.” Besides, metal-based composites are studied at
a later stage, and the prepared Fe;C-porous carbon (Fe;C-C) has
excellent adsorption and peroxymonosulfate (PMS) activation
even in complex water environments. Besides good magnetic
properties and reusability, bisphenol A (BPA) has excellent
degradation performance even at high concentrations.*

At the end of 1984, a new structure-quasicrystal was first
discovered by D. Schechtman et al. in the laboratory, which
significantly affected natural science.” It is a special structure
between crystal and amorphous, with the rotational symmetry
of amorphous and the long period translation order of crys-
tals.>* The structure-quasicrystal also has a series of unusual
physical and chemical properties such as low surface energy,
low friction coefficient, high hardness, and high tensile
strength.?” Therefore, quasicrystals are widely used in surface-
modification materials, thermal insulation materials, aero-
space materials, and structural materials.”® The study of J. T.
Hoeft shows that the i-Al,,Pd,;Mny quasicrystal has a good
adsorption effect on benzene molecules.> Cu-Al-Fe-Cr quasi-
crystals (QCs) is a quasicrystal material with excellent oxidation
resistance, high hardness, and low thermal conductivity.”
However, they cannot be used as structural materials due to
their brittleness at room temperatures.*® QCs have a multi-layer
structure and pore structure, and the number of pores
decreases with increased layers.>* QCs as solid-phase adsorp-
tion materials in the aqueous solution are rarely reported in
previous literature. QCs were chosen as adsorbents of three
different hydrophilic antibiotics in the work to investigate their
adsorption capacity and mechanism, which opens up a new
direction for the extended application of QCs.

2. Materials and methods

2.1. Materials

The antibiotics including TZD (with purity > 99.0%) was
purchased from Shandong Xinhua Pharmaceutical Co., Ltd.
(Shandong, China); IBU (with purity > 99.0%) from Guangzhou
Jufeng Pharmaceutical Co., Ltd. (Guangzhou, China); SAM (with
purity > 99.0%) from Zhejiang Shengtong Biotechnology Co.,
Ltd. (Jinhua, China). Table S1 (see ESIf) presents detailed
physicochemical properties.

The IBU standard solution was prepared by dissolving IBU in
methanol and then diluted in deionized water. TZD and SAM
standard solutions were prepared by dissolving TZD and SAM
directly in deionized water. QCs were prepared by tribology and
Surface Engineering Research Center of School of Mechanical
Engineering, University of Science and Technology Liaoning,
with their average particle size between 400-600 mesh. Deion-
ized water was used throughout the work, and other chemicals
used were in analytical grade without requiring further
purification.

2.2. Characterization of QCs

The surface morphologies and elemental composition of QCs
were analyzed by scanning electron microscopy (SEM) (Zeiss
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model=IGMA HD/VP, Japan) with an accelerating voltage of 15
kv, combined with energy-dispersive X-ray spectroscopy (EDX).
The main components of QCs were detected by an X-ray
diffractometer (XRD) (Bruker Discover D8, Germany). The
surface elements of QCs were analyzed by X-ray photoelectron
spectroscopy (XPS) (Thermo escalab 250xi, America). The
Fourier infrared spectrometer (FTIR) (JASCO model FT/IR-410,
Japan) was used to study the change of functional groups of
QCs before and after adsorption; with the wavenumber range of
400-4000 cm ™', and a resolution of 4 cm™*. Under N, atmo-
sphere, the thermal characteristics of the QCs were examined
using a thermogravimetric analyzer (PerkinElmer model Dia-
mond 6300, America) at a heating rate of 10 °C min ™" from 35 to
1000 °C.

A laser particle size analyzer (Battersize model BT-9300S,
China) was used to measure the particle size distribution of
QCs. The point of zero charge (PZC) was measured with
potentiometric mass titration using an automatic titrator (848
Titrino plus). pH values in the process were completed using
precise pH test papers and a digital pH meter (Rex Electric
Chemical model PHS-3C, China). The concentration changes of
adsorbents before and after adsorption were completed by a UV
spectrophotometer (model UV-1700SP C, Shanghai Meizan
Instrument Co., Ltd., China). All drawings were completed by
software Origin 2019.

2.3. Batch adsorption

Intermittent adsorption experiments were performed to study
the adsorption of IBU, SAM, and TZD by QCs. In all experi-
ments, 25 mg QCs were mixed with 50 mL adsorbates in
a brown conical flask and were oscillated at a rate of 150 rpm in
a thermostatic orbital shaker (Scigenics Biotech model Orbitek,
India). After reaching adsorption equilibrium, the 0.45 pum
regenerative fibrous membrane was used for filtration. The
influence of different conditions on the adsorption effect was
studied by the control variable method. 0.1 M HCIl and 0.1 M
NaOH solution were used to adjust the initial pH of the adsor-
bate solution to the range of 1-12. The adsorption effect of the
adsorbate solution was tested 480 minutes to study adsorption
kinetics. The pseudo-first-order model, pseudo-second-order
model, and internal diffusion model were used to study the
effect of time on adsorption. The adsorption isotherms were
studied at an adsorbate concentration of 5-100 mg L™ " and the
progressive one-fit analysis was performed by Langmuir,
Freundlich, Tempkin and D-R models. Thermodynamic studies
were also performed at 385, 390, 395, 400, 405, 410 and 415 K.
All experiments were repeated twice to prevent large accidental
€rrors.

2.4. Analysis of adsorbate

The concentration of adsorbate solution before and after
adsorption was measured by a UV spectrophotometer (model
UV-1700SP C, Shanghai Meizan Instrument Co., Ltd., China).
The calibration curves of IBU, SAM, and TZD (R* = 1.0000,
0.9972, and 0.9964, respectively) were performed in the
concentration of 0-100 mg L', and the detection wavelengths

© 2022 The Author(s). Published by the Royal Society of Chemistry
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were set to 273, 230, and 300 nm, respectively. Based on the data
obtained, their adsorption capacity was calculated according to
the following formula:

(G-

qe = M— (1)
(G-CV

qr = M (2)

where ¢. (mg g~') is the adsorption amount adsorbed at equi-
librium; ¢, (mg g~ ") the adsorption amount adsorbed at time ¢
C; (mg L") the concentration of adsorbate at time ¢; C, (mg L)
and C; (mg L") are the initial and equilibrium concentrations
of adsorbate; M (g) is the mass of the adsorbent; V (L) the
volume of the solution.

2.5. Recyclability tests of QCs

The reusability and stability of QCs were tested through five
cyclic adsorption experiments in the work. The 50 mL,
25 mg L~ adsorbate solution, and 25 mg quasicrystals were
mixed in a brown conical flask, and then pH and temperature
were optimized for adsorption. After a period of shaking in the
shaker, a filter membrane was used to filter the 5 mL solution,
and its concentration was measured in the ultraviolet spectro-
photometer. The remaining solution was filtered and separated
by filter papers. Then wash ultrasonically for 15 min by 10 mL
methanol (IBU), and use 10 mL deionized water (SAM and TZD)
as the regenerant. Filter again and dry at 110 °C to obtain the
adsorbate for the next recycling. This cycle was repeated five
times.

2.6. Data analysis

The pseudo-first-order model (3), pseudo-second-order model
(4), and Intra-particle diffusion model (5) were used to fit and
evaluate the kinetic data of QCs' adsorption. Detailed procedure
calculating of adsorption results was explained in Text S1
(see ESIY).

Langmuir (6), Freundlich (7), Tempkin (8), and D-R (9)
models were used to fit and analyze the isotherms data, thus
determining the maximum adsorption capacity of QCs to
adsorbates. The theory behind each model is given in Text S2
(see ESIY).

The thermodynamic parameters of the standard Gibbs free
energy (AG°) (10), the enthalpy change (AH°) (11), and the
entropy change (AS°) (12) were calculated to evaluate the ther-
modynamic behavior of QCs on adsorbates. Text S3 (see ESIT)
shows the detailed calculation.

3. Results and discussion

3.1. Characterization of QCs

Fig. 1 shows the particle size distribution of QCs, and Table S2f
shows the main data. The distribution of QCs is mainly
concentrated in the range of 5-75 pum. The average particle size
is 19.6 um (Dx (50)); 10% of the particle size is less than 10.7 pm

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Particle size distribution of QCs.

(Dx (10)); 10% of the particle size is greater than 35.6 pum
(Dx (90)).

The surface elements of QCs were studied by XPS. Wide-scan
XPS spectra (see Fig. S1(a)f) show that QCs contain Al, Cu, Fe,
and Cr. The peak of Al is stronger, indicating higher Al content
in QCs. It is consistent with the results detected by XRD.
Narrow-scan XPS spectra (see Fig. S1(b)-(e)}) show that the
intensity of the Al2p spectrum is the strongest. There are two
peaks—one at 74.0 eV belongs to the quasicrystalline phase; the
other at 75.5 eV belongs to alumina.”” The peaks of Cu2p, Fe2p,
and Cr2p are relatively weak, indicating that the oxides of Cu,
Fe, and Cr on the QCs surface are not abundant. The reason is
that the aluminum oxides on the surface boundary of QCs
inhibit the further oxidation of Cu, Fe, and Cr. Narrow-scan XPS
spectra indicate that the valence of Cu, Al, Fe, and Cr is not
unique, showing that QCs may be composed of various
substances.

The composition of QCs crystal is characterized by X-ray
diffraction (XRD). Fig. 2(a) shows QCs are mainly composed of
AlgsCu,oFe;,Crs (PDF No. 42-1208), Alg,Fe 4 (PDF No. 45-1177),
AlFe; (PDF No. 50-0955), and Cr (PDF No. 88-2323). SEM images
and EDX images present many pores on the surface of Algs-
Cu,oFe;oCrs, which provides the necessary conditions for
adsorption.”® Therefore, AlgsCuyoFe oCrs is the substance
mainly used for adsorption in the composition of QCs. After the
repeated cyclic adsorption of IBU (see Fig. 2(b)), TZD (see
Fig. 2(c)), and SAM (see Fig. 2(d)), we performed XRD again for
adsorbed QCs. In Fig. 2, no significant change exists in the
crystal lattice and phase of QCs before and after adsorption, so
QCs are stable adsorbents.

DSC-TG mass-loss analysis is performed at 35-1000 °C to
evaluate the stability of samples (see Fig. S27). The mass of QCs
decreases at 35-85 °C, and the endothermic peak at 85 °C is
mainly attributed to the evaporation of free water in QCs.
However, when the temperature is greater than 100 °C, the mass
of QCs increases with the increased temperature. The
exothermic peak at 615 °C is due to the interdiffusion of
Alg,Feqg, AlFe;, Cr, and AlgsCu,oFe;oCrs in QCs, which leads to

RSC Adv, 2022, 12, 9995-10004 | 9997
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Fig. 2
after SAM adsorption.

the unstable structure of quasicrystals and the formation of QCs
with higher purity. Moreover, the increased mass is mainly
caused by the adsorption of N, by QCs. The melting peaks
appear between 790 and 810 °C, and the DSC values increased
sharply between 810 and 845 °C, indicating that the melting
point of QCs is near 845 °C.

The morphology of QCs is characterized by scanning elec-
tron microscopy (SEM). In Fig. 3, QCs are mainly composed of
some regular spheres with different sizes and some irregular

Fig. 3 SEM images (magnification 2000x and 5000x) of QCs.
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(a) XRD pattern of QCs; (b) XRD pattern of QCs after IBU adsorption; (c) XRD pattern of QCs after TZD adsorption; (d) XRD pattern of QCs

shapes. According to XRD and EDX, regular spheres may be
Alg5sCuyoFe;oCrs, while irregular shapes may be Alg,Fe;s, AlFe;,
and Cr. The regular spherical surface is arranged by some
smooth regular polygons similar to fish scales.

It forms pores of different sizes at the sharp corners of the
polygon, which makes a great contribution to adsorption. The
interior takes the surface as a template and is self-organized
with Cu into a layered structure,” which provides a great
potential for multilayer adsorption. These irregular substances

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Energy dispersive X-ray (EDX) spectrometry of QCs.

are attached to the sphere surface. Some places on the surface
are concave, and the polygons on the surface become blurred.
Thus, the irregular substances are embedded in the sphere
instead of grafting due to extrusion. The concave position may
be formed after the irregular substances fall off.

The EDX diagram (see Fig. 4) shows that the selected area is
mainly the regular spherical surface and a small part of irregular
substances. The main elements in the selected area are Al, Cr, Fe,
and Cu, and the percentages of their atomic numbers are 56.19,
10.17,10.30, and 23.34%, respectively. Therefore, combined with
XRD, the regular spherical surface is mainly composed of Algs-
Cu,oFe,(Crs, which can determine adsorbent substances.

3.2. Effect of solution pH

Adsorption is a surface control process, so pH is an important
parameter to study adsorption.*® In this experiment, the pH of
the solution was adjusted by adding HCl and NaOH. As shown
in Fig. S3,1 the adsorption capacity of QCs for IBU reached the
optimal value of 46.96 mg g~ ' at pH 4.5; at pH 2.0, the
adsorption capacity of QCs for SAM and TZD reached the
optimal values of 35.29 and 49.21 mg g ', respectively. When
pH was greater than the optimum, the adsorption amount
decreased rapidly and reached the minimum in alkaline
conditions. Then it became stable.

When the pH of IBU, SAM, and TZD solution was less than
their pK,, the adsorbate in the solution was mainly cation;
however, the zero charge point (see Table S2t for pHpzc) of QCs
was 1.0. When pH > 1.0, the surface of QCs was a mainly
negative charge. Therefore, when 1.0 < pH < pK,, there was
a strong electrostatic attraction between the adsorbate and the
QCs, and the negative charge on the surface of QCs increased
rapidly with increased pH.

Fig. S31 shows that the adsorption capacity increases with
increased pH in the range of 1.0-pK, and reaches the maximum
when pH is about pK,. When pH > pK,, the adsorbate mainly
exists as anions, and there is a strong electrostatic repulsion
with the surface anions of QCs. Therefore, when pH > pK,, the
adsorption capacity of the QCs decreases sharply with
increased pH.

Table S11 shows that IBU and TZD are insoluble and slightly
soluble in water, respectively, and both contain hydrophobic-

© 2022 The Author(s). Published by the Royal Society of Chemistry
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group phenyl (C¢Hs—). SAM is soluble in water, and the func-
tional groups are hydrophilic. QCs are hydrophobic materials
with a smooth surface and small friction coefficient. The
adsorbate is driven by thermodynamic stability, and hydro-
phobic groups tend to accumulate on the quasicrystal surface to
reduce surrounding water molecules.** Therefore, when the
solution is alkaline, it still has weak adsorption due to the van
der Waals force.

3.3. Adsorption kinetics

The equilibrium time and adsorption rate of the adsorption
system can be evaluated by the relationship between the
adsorption capacity and contact time and the kinetic model.
Fig. 5(a) shows that the equilibrium adsorption time of TZD
(450 min) and SAM (450 min) is much longer than that of IBU
(150 min). The adsorption rates are extremely fast in the first
25 min, but the adsorption rate gradually slows down with time.
The high initial solute concentration and more adsorption sites
of the adsorbent result in a rapid initial adsorption rate.
However, the solute concentration and the effective adsorption
sites decrease with time, so the adsorption rate gradually
decreases. The shorter time for IBU to reach the adsorption
equilibrium is mainly due to the smaller molecular weight of
IBU. Relatively, many effective adsorption sites can be adsor-
bed. Moreover, the negative charge on the QCs surface is more
intensive and the electrostatic attraction is greater due to the
greater pH of IBU solution, which makes IBU quickly transfer to
the QCs surface.

The pseudo-first-order model (see Fig. 5(b)), the pseudo-
second-order model (see Fig. 5(c)), and the intraparticle diffu-
sion model (see Fig. 5(d)) are interpreted by piecewise fitting,
respectively, to understand the adsorption kinetics character-
istics. Table 1 shows the main parameters.

The pseudo-first-order model is mainly used to describe the
rate at the initial stage of adsorption, but it is difficult to
describe the entire adsorption process. Therefore, the pseudo-
first-order model is not discussed in depth in the work.

The correlation coefficient of the pseudo-second-order
model is slightly better than that of the pseudo-first-order
model. However, the fitting effect of the pseudo-second-order
model does not reach the ideal state, without explaining that

RSC Adv, 2022, 12, 9995-10004 | 9999
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(a) Effect of contact time on adsorption of antibiotics by QCs; (b) pseudo-first order model plot; (c) pseudo-second order model plot; (d)

Table1 Parameters of pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetic model models for adsorbing IBU, TZD, and
SAM on QCs (conditions: T = 25 °C; pH = 4.5 (IBU) and 2.0 (TZD and SAM); initial concentration of 25 mg L)

Parameter value

Kinetic model Parameters IBU-QCs SAM-QCs TZD-QCs
Pseudo-first-order ke, (min™) 0.0217 0.0136 0.0171
Ry 0.9907 0.9978 0.9946
ke, (min ™) 0.0375 0.0301 0.0179
Ry 0.9980 0.9908 0.9978
Pseudo-second-order ks (g mg™ " min ") 0.0009 0.0003 0.0002
g (mg g™ 49.43 38.41 54.31
R 0.9991 0.9737 0.9412
Intraparticle diffusion kipy (mg g min~"?) 6.7065 2.7140 4.9083
Cy —0.4457 —0.0927 2.4322
Ry 0.9891 0.9488 0.9886
kip> (mg g " min~*?) 2.5924 1.4997 1.9709
C, 12.2449 1.3160 1.4406
R, 0.9910 0.9918 0.9918
kips (mg g ' min ') 0.4324 0.1085 0.0912
Cs 37.8134 30.6423 43.5001
R;’ 0.9874 0.9196 0.8632

the adsorption process should be controlled by chemical
adsorption. Therefore, the adsorption process may be
controlled by physical adsorption and chemical adsorption.

Since the pseudo-first-order and pseudo-second-order
models cannot express the diffusion theory, the principle of
adsorption kinetics is further analyzed by the internal diffusion
model in Section 3.7.

10000 | RSC Adv, 2022, 12, 9995-10004

3.4. Adsorption isotherm

Adsorption isotherm is a common method to describe the
distribution of adsorbed molecules between the liquid phase
and solid phase when the system reaches equilibrium.** The
adsorption isotherm model can simulate the interaction
between adsorbents and adsorbates. In Fig. S5,1 the interaction

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Parameters of Langmuir, Freundlich, Tempkin, and D-R.
(conditions: T =25 °C; pH = 4.5 (IBU) and 2.0 (TZD and SAM); time =
480 min.)
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Table 3 Parameters of thermodynamic adsorbing IBU, TZD, and SAM
on QCs (conditions: pH = 4.5 (IBU) and 2.0 (TZD and SAM); time =
480 min; initial concentration = 25 mg L™%)

Parameter value

Parameter value

Temperature
Isotherm model  Parameter IBU-QCs SAM-QCs TZD-QCs Parameter (K) IBU-QCs SAM-QCs  TZD-QCs
Langmuir gm (mgg™) 67175 90.74 577.02 AG° (k] mol™") 285 —9.41 —-3.61 —8.34
Iy (Lmg™")  0.0024 0.0177 0.0028 290 —8.26 —3.55 -7.87
R? 0.8376 0.9405 0.4077 295 —8.14 -3.39 -7.35
Freundlich ke (mg g7 1.9086 4.0193 2.0063 300 —7.55 —3.28 —7.14
n 1.1573 1.6499 1.0790 305 —6.82 —-3.20 —6.94
R* 0.9995 0.9934 0.9916 310 —6.24 —3.04 —6.60
Tempkin Ky (Lmg™")  74.6707  16.7287 43.2626 315 —5.68 —2.98 —6.40
f —2.3239 —1.2743 —2.0787 320 —5.56 —2.81 —6.27
R? 0.9965 0.9911 0.9823 AH°(] molfl) —589.35 —145.73 —359.00
D-R go (mgg™) 11217 36.06 82.47 AS°(J mol ' K1) —~1.60 —-0.33 —-0.85
E (K molfl) 0.0328 0.2093 0.0609 R? 0.9913 0.9980 0.9806
R* 0.9021 0.9811 0.9274

mechanism between QCs and adsorbates is explained by fitting
Langmuir (see Fig. S5(a)t), Freundlich (see Fig. S5(b)t), Temkin
(see Fig. S5(c)t), and D-R (see Fig. S5(d)t) models. Table 2
shows the main parameters.

Fig. S41 shows that SAM and TZD have excellent adsorption
effects when the solution concentration is less than 50 mg L.
However, the adsorption capacity has barely changed between
50-60 mg L', and the adsorption capacity gradually increases
when the solution concentration is more than 60 mg L .
However, the curve is flatter than that below 50 mg L™, which
may be mainly related to multi-layer adsorption and vertical
accumulation in the active center.**> Compared with the
Langmuir model (IBU: 0.8376, SAM: 0.9405 and TZD: 0.4077),
the Freundlich model (IBU: 0.9995, SAM: 0.9933 and TZD:
0.9916) has better correlation coefficients (R?), indicating that
QCs follow the Freundlich adsorption isotherm model. There-
fore, the adsorption of QCs belongs to multilayer adsorption.

In the first adsorption layer of the QCs' structure, the
adsorption molecules enter a large gap, and the adsorption rate
is the fastest. When it reaches saturation, the QCs surface
aggregates more adsorbates and the relative pressure increased
with the increased concentration, which reorientates the
adsorbed substances in the internal pores.**** The second
adsorption layer is gradually formed when the concentration is
50-60 mg L', providing more space for new adsorbate mole-
cules. For IBU, its structure and molecular weight are relatively
smaller and can enter smaller pores. Therefore, the second
adsorption layer is not formed when the concentration is less
than 100 mg L™ " (see Fig. S47).

K is the affinity coefficient of Freundlich. Table 3 shows
that their affinity order is as follows: SAM > TZD > IBU.
However, QCs are hydrophobic. When adsorbate affinity is
stronger, their hydrophilicity is stronger, resulting in weaker
adsorption capacity, which corresponds to the experimental
data. Parameter n known as the heterogeneity factor, is used to
evaluate when the adsorption process is physical (n > 1),
chemical (n < 1), or linear (n = 1).>* Table 3 shows that
adsorption is a physical process.

© 2022 The Author(s). Published by the Royal Society of Chemistry

The Tempkin model describes the linear relationship
between the decreased adsorption heat and adsorption
capacity, which is suitable for heterogeneous surfaces.** In
Table 3, Tempkin has an excellent fitting effect, indicating
a strong electrostatic attraction between the adsorbate and the
adsorbent.’ It is consistent with the effect of pH.

Kt mainly reflects the adsorption heat. When Kt > 1, the
adsorption process is mainly exothermic; when Ky < 1, it is
mainly exothermic.?” The Ky value is greater than 1 in the work,
indicating that the adsorption process is exothermic. With the
increased temperature, the hydrophobic effect weakens,
resulting in decreased adsorption capacity.

E in the D-R model mainly reflects the adsorption energy.
When the E value is in the range of 8-16 kJ mol ', the
adsorption process is considered as an ion-exchange mecha-
nism, which is chemical adsorption. When the E value is less
than 8 kJ mol %, it is a physical adsorption process.*® E values
are less than 8 k] mol ' in the work, indicating that the
adsorption process is mainly physical adsorption (consistent
with Freundlich's judgment). However, the correlation coeffi-
cient (R*) of D-R is relatively low, which cannot be used as
a strong basis for judgment.

3.5. Adsorption thermodynamics

Adsorption energy is a powerful parameter to study the
adsorption mechanism. In this experiment, the internal change
of energy in the adsorption process was studied at 285-320 K.
Table 3 shows the main parameters.

Fig. S61 shows the adsorption capacity presents a negative
growth trend with the increased temperature. Besides, AH® is
less than 0, indicating that the adsorption process is
exothermic. With the increased temperature, the hydrophilicity
of the adsorbate is enhanced, and the hydrophobicity of QCs is
weakened, so the adsorption of QCs is reduced. AH® is less than
20 k] mol™ and the absolute AG® value decreases with the
increased temperature, indicating that adsorption is a physical
process. It is consistent with Freundlich's judgment.

The negative AG° value indicates that the whole adsorption
process is spontaneous, which is attributed to the main role of

RSC Adv, 2022, 12, 9995-10004 | 10001
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electrostatic attraction in the adsorption process. AS° < 0 indi-
cates that the randomness of the solid-liquid interface
decreases due to the orderly adsorption in the adsorption
process. The adsorbate can form an orderly quasi-periodic
coating in the unique position on the QCs surface, decorating
the crystal lattice of quasicrystals.

3.6. Regeneration and reusability

The recycling of adsorbents can reduce the process cost and
protect the environment. The reusability of adsorbents was
explored through five repeated cycles in the work. The adsorbed
QCs were dissolved in methanol (IBU-QCs) and deionized water
(SAM-QCs and TZD-QCs) for regeneration and then dried at
110 °C for the next cycle. Fig. 6 shows that the adsorption
capacity of QCs for the three adsorbates fluctuates in a small
range (Ag. = +£2 mg g~ ') in five cycles, indicating that QCs have
excellent recyclable and stable adsorption. Therefore, QCs can
be used for practical adsorption.

3.7. Adsorption mechanism

The intraparticle diffusion model is mainly used to predict the
steps of speed control, depending on surface diffusion and pore
diffusion.® In Fig. 5(d), the relationship between g, and " is
nonlinear, indicating that the adsorption process may involve
multiple processes.

Therefore, piecewise linear regression was used to describe
different adsorption stages in the work. The first stage was the
external surface transport stage with the steep curve, which is
the fastest adsorption period. The second stage was gradual
adsorption, and the curve tends to be smooth due to the
diffusion of adsorbates through the pores of adsorbents. The
third stage was adsorption equilibrium, and the curve was close
to the level, because of the low adsorption of some micropores
and the low concentration of adsorbates. Fig. 5(d) shows that
the linear fitting does not pass through the origin, indicating

50 B
Nl |
AN NN
v
a1 1
| 11

1 2 3 4 5
number of recycles

Fig. 6 Adsorption—capacity variation with recycles for regenerating
QCs.
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that intraparticle diffusion is not the only mechanism for the
adsorption of QCs.*

FTIR analysis was performed before and after adsorption to
study the adsorption mechanism of QCs on antibiotics. After
adsorption, multiple characteristic peaks of QCs can be found,
indicating that QCs have a good adsorption effect on adsor-
bents. Compared with IBU, TZD and SAM before adsorption, the
intensity of characteristic peaks of IBU-QCs, TZD-QCs, and
SAM-QCs after adsorption decreases. The electrostatic attrac-
tion between QCs and adsorbents reduces the electronegativity
difference between antibiotics and QCs, which weakens the
absorption-peak intensity.**

Fig. 7 shows that some characteristic peaks in IBU, TZD, and
SAM disappear, indicating that the adsorption of QCs signifi-
cantly affects the functional groups of the adsorbent. The
disappearance of the characteristic peak at the wavelength of
1640-1400 cm ™' due to the orderly adsorption in the adsorption
process makes the benzene ring skeleton in the adsorbent form
a more stable period on the QCs surface. The disappearance of
characteristic peaks between 1300-1000 cm " is because of the
stretching between the metal in QCs and the oxygen-containing
functional groups of adsorbents,** with obvious characteristic
peaks at about 519 cm™ .

After adsorption, the characteristic peaks at 751 cm ™" in IBU
migrates to 733 cm '; those at 3465 and 1630 cm ' in TZD
migrate to 3455 and 1641 cm ™ *; those at 3460 and 1652 cm ™ in
SAM migrate to 3477 and 1641 cm ', respectively. Besides,
some peaks have a weak offset. The deviation of these peaks
may be mainly due to the electron-induced effect between QCs
and adsorbents.*

As a summary, the adsorption of QCs belongs to multi-layer
adsorption, and the adsorption process is mainly shown in
Fig. 8. The hydrophobic force is the main surface driving force
so that antibiotics can be quickly adsorbed on the QC surface.
Fig. 5(a) shows that the adsorption velocity within 10 min before

o
>
(]
Q
g
=
% 3460
s QCs
= 733
IBU-QCs 1641 1399 S19
3450
TZD-QC5174/%6 | 1400 518
3455
SAM-QCs 1641 1398 519
3477
T T T T T T T T T T T T
4000 3500 3000 2500 2000 1500 1000 500

Wavenumbers (cm™)

Fig. 7 FTIR spectra of QCs before and after adsorbing IBU, TZD, and
SAM.
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Fig. 8 Adsorption mechanism of QCs on IBU, TZD, and SAM.

adsorption is much higher than that after adsorption. As the
antibiotic gradually accumulates in the surface pores and
gradually reaches saturation, the adsorption capacity remains
stable at the concentration of 50-60 mg L™, With the gradual
accumulation of antibiotics on the surface, the pressure
increases gradually. Antibiotics enter the second-layer pores of
QCs when the concentration is greater than 60 mg L™*, and the
adsorption capacity increases. The adsorption process is mainly
controlled by hydrophobic force, electrostatic attraction, and
van der Waals force. The intensity of characteristic peaks before
and after adsorption decreases, which can be proved by the shift
of characteristic peaks.

4. Conclusions

QCs were first used to evaluate the adsorption capacities of IBU,
SAM, and TZD in the work. The results showed that the
adsorption capacities of QCs for IBU, SAM, and TZD were
different. When the concentration was 25 mg L', the
maximum adsorption capacities of IBU, TZD, and SAM were
46.964, 35.292, and 49.206 mg g ', respectively. Through
analyzing pH, adsorption isotherm, adsorption kinetics, and
adsorption thermodynamics, the main driving force of
adsorption was electrostatic attraction and hydrophobicity.
Freundlich and Tempkin fit the adsorption isotherm of QCs,
indicating that the adsorption of QCs was a spontaneous,
physical, and multilayer adsorption process. The adsorption
thermodynamic analysis showed that the adsorption process
was exothermic. With the increased temperature, the hydro-
phobicity decreased, resulting in decreased adsorption

capacity.

© 2022 The Author(s). Published by the Royal Society of Chemistry

The particle-size analysis showed that the particle size of QCs
was relatively concentrated, mainly distributed between 5-75
um, and the average particle size was 19.6 pum. After five
consecutive recycling experiments, the adsorption of QCs could
reach more than 97% of the initial adsorption capacity. In short,
QCs are efficient, stable, materials for a wide range of
applications.
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