Issue 38, 2013

Nanomaterials for bio-functionalized electrodes: recent trends

Abstract

Recent years have faced stimulating developments in the functionalization of electrode surfaces with biological materials, notably due to the significant input of nanosciences and nanotechnology. In this review (over 450 references), we are discussing the interest of both nano-objects (metal nanoparticles and quantum dots, carbon nanotubes and graphene) and nano-engineered and/or nanostructured materials (template-based materials, advanced organic polymers) for the rational design of bio-functionalized electrodes and related (bio)sensing systems. The attractiveness of such nanomaterials relies not only on their ability to act as effective immobilization matrices, which are, e.g., likely to enhance the long-term stability of bioelectrochemical devices, but also on their intrinsic and unique features (large surface areas, electrocatalytic properties, controlled morphology and structure, possible use as labels) that can be advantageously combined with the functioning of biomolecules, thus contributing to improved bioelectrode performance in terms of sensitivity and selectivity (enzymatic biosensors, DNA sensors, immunosensors and cell sensors) or power (biofuel cells).

Graphical abstract: Nanomaterials for bio-functionalized electrodes: recent trends

Article information

Article type
Feature Article
Submitted
22 Jun 2013
Accepted
22 Jul 2013
First published
23 Jul 2013

J. Mater. Chem. B, 2013,1, 4878-4908

Nanomaterials for bio-functionalized electrodes: recent trends

A. Walcarius, S. D. Minteer, J. Wang, Y. Lin and A. Merkoçi, J. Mater. Chem. B, 2013, 1, 4878 DOI: 10.1039/C3TB20881H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements