Issue 41, 2022

Molecular dynamics simulations of cold welding of nanoporous amorphous alloys: effects of welding conditions and microstructures

Abstract

Nanoscale cold welding is a promising method in the bottom-up fabrication of nanodevices. Herein, cold welding mechanisms of Cu50Zr50 nanoporous amorphous alloys (NPAAs) are investigated by molecular dynamics simulations, along with the mechanical properties of the welded products. Effects of welding conditions and microstructural parameters are considered. Our results demonstrate that the welded joint has superior mechanical properties. The ultimate strength of the welded NPAAs can be as high as 94–99% that of the original NPAAs but 62–75% for the yield strength and elastic modulus. Voronoi analysis declares that the changes in atomic clusters of NPAAs caused by cold welding are mild. The welding conditions do not have remarkable influences on the mechanical responses of the welded structure. The NPAAs with smaller ligament sizes are more suitable for cold welding, benefiting from the size effect of amorphous alloys. We also successfully use cold welding to fabricate gradient NPAAs and repair fractured NPAAs. It is found that the ultimate tensile strength of the NPAAs changes very little with each successful cold welding. After ten fracture-welding cycles, the ultimate strength of the as-welded specimen is slightly lower than that of the raw materials.

Graphical abstract: Molecular dynamics simulations of cold welding of nanoporous amorphous alloys: effects of welding conditions and microstructures

Article information

Article type
Paper
Submitted
06 Aug 2022
Accepted
28 Sep 2022
First published
17 Oct 2022

Phys. Chem. Chem. Phys., 2022,24, 25462-25479

Molecular dynamics simulations of cold welding of nanoporous amorphous alloys: effects of welding conditions and microstructures

Y. Zhang, L. Su, J. Xu, Y. Hu, X. Liu, S. Ding, J. Li and R. Xia, Phys. Chem. Chem. Phys., 2022, 24, 25462 DOI: 10.1039/D2CP03624J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements