Issue 40, 2015

Transport properties and enhanced thermoelectric performance of aluminum doped Cu3SbSe4

Abstract

The electrical transport and thermoelectric properties of Cu3Sb1−xAlxSe4 (x = 0, 0.01, 0.02 and 0.03) compounds are investigated in the temperature range of 300–600 K. The results indicate that with increasing Al content from x = 0 to x = 0.03, hole concentration increases monotonically from 8.04 × 1017 to 1.19 × 1019 cm−3 due to the substitution of Al3+ for Sb5+, thus leading to a large decrease in the electrical resistivity of Cu3Sb1−xAlxSe4. Meanwhile, the increase in hole concentration leads to a transition from a non-degenerate (x = 0) to a partial degenerate (x = 0.01, 0.02) and then to a degenerate state (x = 0.03). The power factor (PF) of all the Al-doped Cu3Sb1−xAlxSe4 samples is remarkably improved due to the optimization of hole concentration. Lattice thermal conductivity κL of the heavily doped sample (x = 0.03) is reduced. As a result, a large thermoelectric figure of merit ZT = 0.58 is obtained for Cu3Sb0.97Al0.03Se4 at 600 K, which is around 1.9 times as large as that of the un-doped Cu3SbSe4.

Graphical abstract: Transport properties and enhanced thermoelectric performance of aluminum doped Cu3SbSe4

Article information

Article type
Paper
Submitted
02 Feb 2015
Accepted
27 Mar 2015
First published
27 Mar 2015

RSC Adv., 2015,5, 31399-31403

Author version available

Transport properties and enhanced thermoelectric performance of aluminum doped Cu3SbSe4

Y. Li, X. Qin, D. Li, X. Li, Y. Liu, J. Zhang, C. Song and H. Xin, RSC Adv., 2015, 5, 31399 DOI: 10.1039/C5RA02030A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements