Issue 37, 2023

A novel theoretical method to determine the effective optical properties of high refractive index nanocomposites

Abstract

The continuous development of advanced optical devices towards high performance, miniaturization and integration has led to an increasing demand for high refractive index optical materials. Nanocomposites – made from high refractive index inorganic nanoparticles and good processability polymers – combine the advantages of both materials to create a synergistic effect. However, the diversity and complexity of the composites make laboratory preparation less efficient. Therefore, to prepare composites that meet the refractive index requirements, it is essential to predict the effective optical properties at different wavelengths. This study proposes a finite element parametric retrieval (FEPR) method to calculate the effective complex refractive index of nanocomposites (meff). The effects of the ratio of film thickness to particle diameter, particle arrangement, particle volume fraction (fv) and particle diameter (d) on meff are considered. The results demonstrate that changing the spatial arrangement, volume fraction and diameter of the particles can cause changes in the scattering effect of particles or the interaction between the electromagnetic waves and the particles, resulting in changes in the meff. Compared with effective medium theory (EMT), the FEPR method can be used to characterise the meff values in complex cases through finite element parametric modelling. The FEPR method is an efficient and accurate method for predicting the effective optical properties of nanocomposites, and can also be applied to the design and development of materials to discover the factors influencing the properties and variation patterns from large amounts of data, and to obtain predictive models that can guide the design of new materials.

Graphical abstract: A novel theoretical method to determine the effective optical properties of high refractive index nanocomposites

Article information

Article type
Paper
Submitted
23 May 2023
Accepted
04 Sep 2023
First published
05 Sep 2023

Phys. Chem. Chem. Phys., 2023,25, 25689-25700

A novel theoretical method to determine the effective optical properties of high refractive index nanocomposites

X. Li, C. Jia, C. Wang, L. Ma and L. Liu, Phys. Chem. Chem. Phys., 2023, 25, 25689 DOI: 10.1039/D3CP02360E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements