Thermoelectric response of single quintuple layer sodium copper chalcogenides persisting at high temperature†
Abstract
The thermoelectric transport properties of two-dimensional (2D) layered NaCuX (X = S, Se) are investigated by employing first-principles based Boltzmann transport theory. Single quintuple NaCuX layers have a relatively large Seebeck coefficient (S), electrical conductivity (σ) and hence power factor (PF = S2σ) for a p-type heavy doped region due to the valence band degeneracy. The largely reduced σ by dominant polar scattering leads to a PF up to 0.27 and 0.84 mW m−1 K−2 at 1200 K for p-type NaCuS and NaCuSe monolayers, respectively. The high polarizability of the Cu–X bonds in the CuX4 tetrahedra leads to anharmonic phonon behavior which produces an intrinsic lattice thermal conductivity (κl) as low as 1.03 and 0.75 W m−1 K−1 at 300 K for NaCuS and NaCuSe, respectively. The predicted figure of merit (zT) increases monotonically from around 0.25 at 300 K to 2.01 at 1200 K at an optimal carrier density of around 1 × 1013 cm−2 for p-type NaCuSe and from around 0.09 at 300 K to 1.15 at 1200 K at an optimal carrier density of around 1 × 1014 cm−2 for p-type NaCuS. These findings indicate that the NaCuS, especially NaCuSe, monolayers are promising 2D thermoelectric materials persisting at high temperature.