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catalysts with high dispersion
supported by SBA-15 evaluated for the selective
oxidation of benzyl alcohol to benzaldehyde
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and Ahmed S. Al-Fateshd

A wetness impregnation method was used to impregnate the substrate with a substantial quantity of oleic acid

together with a metal precursor, leading to significantly dispersed Ni–Fe bimetallic catalysts based on

mesoporous SBA-15. Using a wide variety of characterization methods, such as XRD, BET, and TEM Analysis,

the physiochemical properties of the catalyst were determined. The addition of the metal does not have any

effect on the structural characteristics of the SBA-15 catalyst, as validated by transmission electron

microscopy (TEM), which shows that the prepared SBA-15 supported catalyst has a hexagonal mesoporous

structure. The catalytic capabilities of the Ni–Fe-SBA-15 catalysts were evaluated in the conversion of BzOH

using tert-butyl hydroperoxide (TBHP) as an oxidant and acetonitrile as a solvent. The Ni/Fe-SBA-15 (NFS-15)

catalytic composition is the best of the developed catalysts, with a maximum conversion of 98% and

a selectivity of 99%. In-depth investigations were conducted into the molar ratio of TBHP to BzOH, the

dosage of the catalyst, the reaction rate, temperature, and solvent. The recycling investigations indicate that

the synthesized Ni/Fe-SBA-15 (NFS-15) catalyst seems to be more durable up to seven successive cycles.
1. Introduction

Industries use selective oxidation techniques to convert alco-
hols into aldehydes and ketones.1–4 Finding high-purity alde-
hydes at a reasonable cost is still a top objective for
researchers.5,6 Traditionally, we generated the hazardous
organic waste, such as benzaldehyde, via toluene, benzyl chlo-
ride, and hydrolysis, respectively.7 This conversion is more
expensive overall9–12 despite its limited selectivity, loss of
conversion, toxic by-products, and substrate specicity.8

Researchers employed liquid-phase selective oxidation with
a noble metal catalyst and a variety of oxidants to get around
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these constraints.13–16 Hydrogen peroxide (H2O2) is a powerful
oxidizing agent that is also good for the environment and
contains more active oxygen.17–20 The inability to reuse the
catalyst and the challenge of separating it from the catalytic
system are two drawbacks of homogeneous catalysis.21

As a result, researchers are becoming more interested in the
synthesis of affordable and environmentally acceptable solid
acid catalysts.22 The activity of the catalysts can be further
increased by supporting materials.23 Mahmoud Nasrollahzadeh
and other researchers thoroughly evaluated the preferential
oxidation of alcohols enabled by polymers.24 Because of its
signicant surface area and well-dened high porosity, ordered
mesoporous silica is thought to have better catalyst support.25

In many heterogeneous catalyzes, metal catalysts, including
Ru,26 Co,27 Au,28 and Pd,29 are used. Additionally, benzyl alcohol
was catalytically converted using an SBA-15-assisted Au–Pd
catalyst.30 The expense of oxidation procedures is raised by the
noble metal's high price and agglomeration on the support
surface.31 However, oxidation catalysts made of nickel are
thought to be superior to those made of iron. This is attributed
to stable oxide (nickel oxide) formation, which results in the
catalytic abilities of semiconductor metal oxide rather than
metal catalytic properties.32

Because of its good chemical stability and possible catalytic
uses, Ni/Fe is a great option.33 It has been extensively used in the
photocatalytic reduction of CO2, photocatalytic splitting of
© 2024 The Author(s). Published by the Royal Society of Chemistry
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water, and photocatalytic synthesis of hydrogen.34 Due to its
exceptional photocatalytic activity, this comes from a quick and
effective charge change between the oxidation states and has
attracted a lot of attention.35,36 The electrical conguration of
the metal may be rapidly and drastically changed to perfectly
accommodate its immediate surroundings.37 Recently, Ni/Fe
has been employed in the selective oxidation of benzyl alcohol
as a substrate for Au–Pd nanoparticles and as a catalyst or
photocatalyst. A photocatalyst made of Ni/Fe was also employed
with SBA-15 as a support.38,39 Researchers were synthesised the
series of mesoporous NixCoy/SBA-15 catalysts with different Ni/
Co ratios for the selective oxidation of alcohol using oxygen as
the sole oxidant and it displayed the best catalytic performance
with a benzyl alcohol conversion of 96.2%.40 However, selective
oxidation is used for the majority of the aforementioned
processes. CeO2, MnO2, and Ni–Fe composites oxidation cata-
lytic agents were created by Xiaodong Zhang et al. and investi-
gated in the process of oxidizing CO and toluene.41

Oleic acid inhibits nanoparticles against agglomeration by
providing steric stability against van der Waals along with
magnetic attractive interactions.42 Gong et al. investigated the
inuence of only one dosage of oleic acid (4 g in 100 ml) on the
structural features of Fe3O4 nanoparticles. They observed that
oleic acid, particularly present in the form of a bilayer, inhibit
Ostwald ripening and promotes the formation of mono-
dispersed magnetic nanospheres.43 In the instance of Co
nanoparticles, an oleic acid/cobalt ratio of 0.15 resulted in
erratically formed black precipitates. Conversely, as the oleic
acid molar ratio reached to 0.6, the capping agent developed
an extremely dense monolayer on the outermost layer of the
nanoparticles, which restored them against agglomeration
and also prohibited the Co from oxidizing in the air.44

However, as reported earlier, owing to the efficiency of oleic
acid involved in the synthesis of the catalysts, likely as a result
of the synthesis of metal oleate species, which stops the
particles from clumping together during calcination. Addi-
tionally, the calcination process causes the metallic oxides to
self-assemble, which results in signicant dispersion and
core–shell metal particles.

Investigations on the selective oxidation of benzyl alcohol
utilizing Ni/Fe and SBA-15 in the liquid phase are still needed.
The particle size, the kind of support, and the interaction
between the support and the Ni/Fe catalyst are some of the
factors that affect the Ni/Fe catalyst's ability to catalyze. This
study involved the development of Ni/Fe-SBA-15 catalysts for the
selective oxidation of benzyl alcohol (BzOH). In-depth research
was done on the factors, such as catalyst quantity, metal
loading, the substrate to oxidant ratio, and reaction tempera-
ture, that affect the efficiency of the oxidation from a catalytic
perspective. The regeneration powers of the catalyst were also
investigated in this work.

2. Experimental information
2.1. Preparation of catalysts and supports

Previous studies have shown that acidic conditions can be
exploited to produce Ni–Fe bimetallic supported SBA-15
© 2024 The Author(s). Published by the Royal Society of Chemistry
catalysts.45 The Ni–Fe loaded SBA-15 was prepared in the
manner described below. Add 4 grams of P123, a triblock co-
polymer (Mol. Wt 5800) to 20 ml of HCl and 130 ml of water.
TEOS (14 ml) is added, and the mixture was subjected to thor-
ough stirring. Nickel nitrate and iron nitrate were added to the
mixture, and stirred for 7.5 h at 45 °C. Aerward, the mixture
was allowed to age for 15.5 hours at 80 °C and cooled down. The
cooled precipitate was dried, ltered, and washed in 25 ml
water. Post-synthesis, the product was calcined for 6 hours at
a temperature of 550 °C with a heating rate of 1 °C min−1 and
progressively cooled.46

Two sets of Ni–Fe bimetallic catalysts, each with a 7% metal
loading (5 wt% Ni-2 wt% Fe/SBA-15 and 4 wt% Ni-3 wt% Fe/SBA-
15), have been made, and compared with a mono metal catalyst
comprising 7% Ni/SBA-15. Iron(III) nitrate nonahydrate and
nickel(VI) nitrate hexahydrate, respectively, served as the
precursors for the nickel and iron. Our previously reported
core–shell precursor with in situ self-assembly technique was
used to make the catalysts. Using an incipient wetness
impregnation technique, a small amount of oleic acid (OA),
nOA/n metal is, controlled at a molar ratio of 0.30, was utilised
in this approach. The dissolved iron(III) nitrate nonahydrate and
nickel hydrate hexahydrate were added, thoroughly mixed, and
then combined with the SBA-15 support. The samples were aged
for 12 h and then dried for around 6 h at 60 °C while being
agitated occasionally. The catalyst material was then heated for
12 h at 100 °C before being calcined for 4 h at 700 °C in an
electric furnace.47

2.2. Catalyst characterization study

Crystallographic tests were carried out using a Cu Ka radiation
source and an X-ray diffractometer (Rigaku Miniex II). The
catalyst's functional group was identied using Fourier trans-
form infrared spectra (FTIR; PerkinElmer). The Micromeritics
ASAP2020 equipment was employed to measure the synthesized
catalyst's surface exposed area and pore volume. High-
resolution scanning electron microscopy was utilized to take
pictures of the materials on a Hitachi S-4800 device (HR-SEM).
High-resolution transmission electron microscopy (HR-TEM)
pictures of the samples were captured using JEOL equipment
(JEM 2010). In order to capture thermogravimetric data from
the samples, we used a thermogravimetric analyser made by
PerkinElmer with model number TGA 7. At room temperature,
a PerkinElmer Fourier transform infrared (FTIR) spectrometer
was utilized to record the as-synthesized samples by using the
KBR pellet approach.

2.3. Catalytic activity in the selective oxidation of benzyl
alcohol

Benzyl alcohol (BzOH – 20 mmol) was oxidized over 0.1 g of
various 7% Ni and Fe catalysts (NFS-15) in a batch reactor
(round bottom ask with Liebig condenser and temperature
controller) utilizing tert-butyl hydroperoxide (TBHP – 25 mmol)
as the oxidant and acetonitrile (10 ml) as the solvent. The
aforementioned combination was thereaer heated at 100 °C
for 7 hours. The products were identied using a gas
RSC Adv., 2024, 14, 2300–2310 | 2301
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Table 1 Surface areas and pore volumes of the catalysts

Catalyst
SBET

a

(m2 g−1)
Pore volumeb

(cm3 g−1)
Dp

c

(nm)
d100

d

(nm)

7Ni/SBA-15 698.12 0.720 7.14 0.80
5Ni–2Fe/SBA-15 652.80 0.692 7.05 0.84
4Ni–3Fe/SBA-15 642.38 0.681 7.00 1.08

a Specic surface area by BET analysis. b Total pore volume estimated at
P/P0 = 0.99. c Average pore diameter calculated by Barrett–Joyner–
Halenda (BJH) method. d From low angle XRD pattern (Fig. 1B).
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chromatograph with a ame ionization detector and a capillary
column composed of 70 percent cyanopropyl polysphenylene
siloxane, known as SGEBPX70, with the following specica-
tions: 0.54 mm (length), 30 m (internal diameter), and 0.60 m
(lm thickness). The impacts of altering experimental param-
eters, such as concentration (7wt%Ni/SBA-15, 5wt%Ni-2wt%Fe/
SBA-15, 4wt%Ni-3wt%Fe/SBA-15), catalyst loading (0.00–0.15 g),
process temperature (50 to 110 °C), and TBHP/BzOH ratio (0.25–
2.00), were assessed using the most active sample, Ni/Fe-SBA-
15. Optimizing the process parameters maximized the BzOH
conversion and benzaldehyde (BzH) selectivity. The possibility
of recycling the sample was also checked.

3. Results and discussion
3.1. Characterization using spectroscopy and
physicochemical

3.1.1. X-ray diffraction analysis (XRD). Fig. 1A illustrates
the XRD proles of the mono-and bi-metallic nickel-iron oxides
promoted by SBA-15 catalysts and the in situ self-assembled
core–shell precursor technique adopting oleic acid as the
precursor. Fig. 1A displays a broad signal around 25° 2q illus-
trates the presence of amorphous SiO2. The broad diffraction
peak located in the 2q range of 15–40° is assigned to the SiO2-
based support. Similar to the previous investigation,48 there is
clear evidence of small particles of Ni and Fe on the support that
is incredibly evenly spaced out. Additionally, the bimetallic
phases of metallic Ni/Ni–Fe are challenging to differentiate
when the catalyst samples were reduced for 1 hour at 700 °C.49

The low angle XRD patterns of the SBA-15 and SZ/SBA-15
samples are shown in Fig. 1B. The patterns seen in the SBA-15
sample are those that were predicted for the sample.
However, aer loading each of the catalyst components, namely
Ni, and Fe, a continuous decreasing trend in peak intensity is
observed, revealing a steady decline in the mesoporous struc-
ture's orderliness as a result of successive impregnation and
calcination.50 Additionally, the location of the lines has slightly
Fig. 1 (A) High angle XRD spectra of (a) 7wt%Ni/SBA-15, (b) 5wt%Ni-2wt%
of (a) 7wt%Ni/SBA-15, (b) 5wt%Ni-2wt%Fe/SBA-15, and (c) 4wt%Ni-3wt%

2302 | RSC Adv., 2024, 14, 2300–2310
shied toward bigger angles [Table 1]. Previous studies
hypothesized that such a change may be brought on by the
deposition of oxides within the pores of SBA-15.51 Owing to
shiing peaks even when small amounts of Ni and Fe are loaded
(Fig. 1A), it is likely that the shi in this state was caused by
changes to the pore's structure.

3.1.2. BET surface area analysis. According to BET analysis,
the adsorption–desorption isotherms for N2 are shown in Fig. 2,
each of the catalyst samples at varied relative pressures (P/P0).
According to IUPAC classication, the isotherms of the various
Ni–Fe/SBA-15 catalysts that have been synthesized exhibit type
IV Langmuir isotherms with H1-shaped hysteresis loops. The
hysteresis loop of type H1 denotes network effects that existent
in a complex mesoporous structure and are important,
promoters that could result in remodelling or geometrical
structural modications to the active zones on the metal
surface.52 Despite loading Ni and Fe, there is considerable
distortion in the hysteresis loop, a phenomenon that is typical
of the behaviour anticipated for a substance with unied pores.

Table 1 also provides a summary of the catalyst's physical
textural characteristics. Due to the mesoporous SBA-15
support's intrinsic properties, as well as every sample of the
catalyst examined possessing a sizable specied surface area. In
fact, compared to the Ni/SBA-15 monometallic catalyst, the
Fe/SBA-15, and (c) 4wt%Ni-3wt%Fe/SBA-15. (B) Low angle XRD spectra
Fe/SBA-15.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 BET isotherm of (a) 7wt%Ni/SBA-15, (b) 5wt%Ni-2wt%Fe/SBA-
15, and (c) 4wt%Ni-3wt%Fe/SBA-15.
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surface area would have been around 698.12 m2 gcat
−1, and the

surface area decreased to approximately 642.38 m2 gcat
−1 when

the Ni metal was substituted with merely 2 wt% Fe. However,
the subsequent substitution of Ni metal up to 3 wt% Fe did not
exhibit a material surface area that differed noticeably from the
substitute of 2 weight percent Fe. The pore volume, meanwhile,
gradually reduced from 0.72 with an upsurge in the Fe
loading.53 Furthermore, the pore capacity marginally decreased
from 0.72 to 0.68 cm3 gcat

−1 with an increase in Fe loading.
Reduction in the specic surface area from 698.12 m2 g−1 of
SBA-15 to 642.38 m2 g−1 aer metal loading could be attributed
to the surface coverage by metal species, while no clear uctu-
ation in pore volume and average pore diameter indicatedmetal
species might be mainly loaded on the exterior surface of SBA-
15 by impregnation, without blocking the pore channels. As
Fig. 3 TEM images of (a) 7wt%Ni/SBA-15, (b) 5wt%Ni-2wt%Fe/SBA-15, a

© 2024 The Author(s). Published by the Royal Society of Chemistry
a whole, the mass transfer resistance of something like the
catalyst's pore network containing the hydrocarbon feed may be
decreased by the existence of bigger pores. However, the pore
diameter with Fe was slightly smaller, at about 7.00 nm,
compared to the unsubstituted Ni/SBA-15 catalyst's 7.14 nm.
These ndings suggest that combining with Fe atoms causes
the metals to migrate further deeper inside the host matrix of
mesoporous silica, which results in a bit of constriction among
the walls. However, the difference in pore size is only noticeably
signicant since the Fe atomic radius (126 pm) is not appre-
ciably more important than that of Ni (124 pm).54

3.1.3. High-resolution transmission electron microscopy
analysis (HR-TEM). The topologies of the reduced Ni–Fe bime-
tallic catalysts are exhibited in the TEM images in Fig. 3. It is
easy to see the distinctive hexagonally organised SBA-15 meso-
porous channels, which contain metallic elements inside or
close to the mesoporous walls. Additionally, Particle sizes are
typically less than 5 nm for all Ni/Ni–Fe compositions, with an
average of 2–3 nm, as evidenced by the TEM images of each
sample. These ndings support the metallic size on a small
scale that was suggested by the XRD results. The actual Ni/Fe
weight ratios are 5.32 and 5.45 at two different locations, as
seen from the data. This outcome exhibits the even dispersion
of both Ni and Fe species across the catalytic support.55,56

3.1.4. High-resolution scanning electron microscopy anal-
ysis (HR-SEM). Utilizing a high-resolution scanning electron
microscope, surface morphologies of Ni–Fe/SBA-15 were
captured (HR-SEM). The HR-SEM images of Ni–Fe/SBA-15
generated using the approach are shown in Fig. 4a, b and c,
respectively. The uniformly sized, spherical particles of Ni–1Fe/
SBA-15 are agglomerated, as evident in the HR-SEM illustration.
Furthermore, the average grain size is less than 100 nm, and all
nd (c) 4wt%Ni-3wt%Fe/SBA-15.

RSC Adv., 2024, 14, 2300–2310 | 2303
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Fig. 4 SEM images of (a) 7wt%Ni/SBA-15, (b) 5wt%Ni-2wt%Fe/SBA-15, and (c) 4wt%Ni-3wt%Fe/SBA-15.
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the particles are quite crystalline. Furthermore, it has been
found that the metal nanoparticles were uniform in the 5wt%
Ni-2wt%Fe/SBA-15 catalyst whereas agglomerated in the 7wt%
Ni/SBA-15 catalyst with particle sizes of 22.34, 18.03, and
18.44 nm, respectively.

3.1.5. Thermal gravimetric analysis (TGA). Fig. 5 displays
the results of a thermo gravimetric analysis of Ni–Fe bimetallic
Fig. 5 TGA spectra of (a) 7wt%Ni/SBA-15, (b) 5wt%Ni-2wt%Fe/SBA-15, a

2304 | RSC Adv., 2024, 14, 2300–2310
SBA-15 synthesized using the impregnation processes. SBA-15
has strong thermal stability and doesn't lose much weight
because its breakdown may be seen up to 700 °C. The minimal
weight loss of the Ni–Fe/SBA-15 catalyst, which ranges from 1%
to 4% and occurs between 100 and 150 C, is most likely the
result of water that has been adsorbed onto the surface of the
SBA-15. Interestingly, all Ni–Fe/SBA-15 catalysts exhibit a weight
nd (c) 4wt%Ni-3wt%Fe/SBA-15.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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loss around 8% between 100 and 200 °C. This is because it has
greater moisture content due to its increased occupancy. The
second inection point, which occurs in the temperature range
of 360 to 510 °C, shows a weight loss of around 10% in all the
Ni–Fe/SBA-15 catalyst implying a breakdown of surface Si–O
bond which result in weight loss. The protection offered by the
Ni–Fe/SBA-15 shell is attributed to this deterioration.
Fig. 7 Effect of catalyst amount on benzyl alcohol oxidation (condi-
tions: BzOH – 20 mmol, NFS-15 catalyst, TBHP – 25 mmol, CH3CN –
10 ml, 90 °C, time 7 h).
4. Selective catalytic oxidation study
4.1. Catalytic activity of Ni/Fe-SBA-15 catalysts on the
oxidation of benzyl alcohol

4.1.1. The impact of metal loading. The catalytic activity of
catalysts with various metal loading percentages, such as 7wt%
Ni/SBA-15, 5wt% Ni-2wt% Fe/SBA-15, and 4wt% Ni-3wt% Fe/
SBA-15, was contrasted in Fig. 6. The quantity of Ni–Fe/SBA-15
atoms introduced into the mesoporous catalyst determines
how acidic the catalyst is and hence provides the assessment
base for the impact of metal enrichment on SBA-15 catalysts in
the BzOH transition. In the SBA-15 sample, just 30% of the
benzyl alcohol is transformed, whereas the addition of Ni–Fe
accelerates the conversion from 30% to a maximum of 90%. On
the other hand, benzaldehyde's selectivity showed marginal
improvement from 90 to 95%with the addition of bimetals. The
addition of metal content shows a profound improvement in
the conversion rate.57 The metal content combination of 5wt%
Ni-2wt% Fe/SBA-15 has provided the maximum conversion and
selectivity of 90% and 95%, respectively. The results of themetal
loading of 4wt% Ni-3wt% Fe/SBA-15 showed higher conversion
and selectivity compared to 7wt% Ni/SBA-15 at 85% and 92%.
However, the results of 4wt% Ni-3wt% Fe/SBA-15 were lower
than 5wt% Ni-2wt% Fe/SBA-15, stressing the fact that the
promoter role of Fe reaches its maximum at 2% loading. Again,
due to a crowding effect between Ni and Fe, the catalytic effi-
ciency at 4wt% Ni-3wt% Fe/SBA-15 is lower, which causes a drop
in the conversion of benzyl alcohol. The optimum 5wt%Ni-
Fig. 6 Effect of metal loading on benzyl alcohol oxidation (conditions:
BzOH – 20 mmol, catalysts – 0.08 g, TBHP – 25 mmol, CH3CN –
10 ml, 90 °C, time 7 h).

© 2024 The Author(s). Published by the Royal Society of Chemistry
2wt%Fe/SBA-15 catalyst is therefore selected and is known as
NFS-15 catalyst in the current study.58

4.1.2. Effect of catalyst weight. The 5wt% Ni-2wt% Fe/SBA-
15 (NFS-15) catalyst was weighted in the range of 0.02 and 0.1 g
to maximize the effect of catalyst concentration on BzOH
conversion. The conversion trend shown in Fig. 7 demonstrates
the importance of catalyst addition in enhancing the conversion
of BzOH. The addition of catalyst from 0.02 to 0.08 g activates
the process to improve the conversion rate from 38 to 92.5%.
Due to a shortage of active sites, catalysts weighing 0.02 and
0.04 g have considerably low catalytic activity. Further adding of
catalyst, the accessibility of the active zones is enhanced, aiding
in the enhancement of reaction activity. As expected, increasing
the catalyst's weight from 0.04 to 0.08 g improves conversion
and selectivity. When the catalyst weight was increased from
0.08 to 0.10 g, the BzH selectivity decreased from 92.5 to 88.5%.
Additionally, boosting the catalyst quantity to 0.10 g lowers
Fig. 8 Effect of reaction temperature on benzyl alcohol oxidation
(conditions: BzOH 20 mmol, NFS-15 catalyst 0.08 g, TBHP 25 mmol,
CH3CN 10 ml, time 7 h).

RSC Adv., 2024, 14, 2300–2310 | 2305

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra07086g


Fig. 9 Effect of TBHP/BzOH molar ratio on benzyl alcohol oxidation
(conditions: BzOH – 20 mmol, NFS-5 catalyst – 0.08 g, CH3CN –
10 ml, 90 °C, time 7 h).
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conversion (88.5 percent), and the study shows that the
optimum addition is 0.08 g. It was proposed that BzOH prevents
benzoic acid from becoming benzaldehyde. The higher catalyst
content can over-oxidise benzaldehyde to benzoic acid, which in
turn can inhibit the conversion efficiency of the process. The
lower selectivity at 0.1 g loading shows the possibility of the
reaction by-products reducing the conversion rate of the cata-
lyst.59 Because much of the catalyst's catalytically active areas
are hidden, all of the catalyst's adsorption zones are, therefore,
inaccessible to reactant molecules. The selectivity of benzalde-
hyde reduces when 0.1 g of catalyst is employed for more than
one reason. The catalyst concentration between 0.08 g and 0.1 g
is remarkably different. We conclude that 0.08 g of catalyst is
Fig. 10 (A) Effect of time (h) on benzyl alcohol oxidation (conditions: BzO
CH3CN – 10 ml, 90 °C). (B) Effect of solvent on benzyl alcohol oxidation (
90 °C, time 7 h).

2306 | RSC Adv., 2024, 14, 2300–2310
ideal for getting the highest levels of selectivity and conversion
based on the results.60

4.1.3. Effect of the reaction temperature. The temperature
of the reaction has a signicant impact on BzOH conversion.
We look into the effects of temperature at 50 to 110 °C. When
the temperature is changed from 50 to 90 °C, the conversion
increases from 30% to 92% (Fig. 8). The conversion and selec-
tivity peaks to 99.5% and 100%, respectively at 90 °C. The
conversion and selectivity dropped to 89.5% and 95.7% when
the temperature was increased to 110 °C. The temperature
signicantly impacts the controlled kinetic process, which
explains why the conversion of benzyl alcohol is poor at 50 and
60 °C. On the other hand, benzyl alcohol conversion and
benzaldehyde selectivity decrease above 90 °C. While benzyl
alcohol conversion is close to 88%, BzOH is lost due to the
inhibitory effects. Furthermore, benzaldehyde transforms into
benzoic acid at higher temperatures. According to the experi-
mental results, 90 °C is the best temperature for maximizing
BzOH conversion.61

4.1.4. The effect of the substrate-to-oxidant ratio. The
conversion of BzOH to benzaldehyde depends on the molar
ratio of the oxidant to the substrate. From 0.25 to 2.00, the
TBHP : BzOH ratio was examined. Fig. 9 shows how the TBHP/
BzOH molar ratio affects the oxidation of benzyl alcohol. The
proportion of conversion rises from 27% to 93.5% with a molar
ratio increase from 0.25 to 1.25. According to the data,
increasing the TBHP level signicantly improves benzyl alcohol
conversion.62 To improve conversion, the TBHP : BzOH ratio
must be greater than 1.25. The conversion rate of benzyl
alcohol, even with a TBHP : BzOH ratio of 1.0, is lower than
expected, and the same can be attributed to the fact that TBHP's
ability to be oxidized declines aer 88.5 percent conversion. At
further increase beyond 1.25 and up to 2.00, the conversion of
benzyl alcohol reduces to 87%, and selectivity drops to 88.6%.
H– 20mmol, NFS-15 catalyst, TBHP– 25mmol, NFS-5 catalyst– 0.1 g,
conditions: BzOH – 20mmol, NFS-5 catalyst – 0.08 g, CH3CN – 10 ml,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Reusability studies of 6Ni–1Fe/SBA-15 sample

Catalyst Run 1 2 3 4 5 6 7

NFS-15 Conversion 90 88.5 87.0 86.4 85.6 85.0 84.8
Selectivity 97.5 96.4 98.8 98.4 97.6 94.6 93.6
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This may be because TBHP, a chemical that readily transforms
benzaldehyde into benzoic acid, decomposes under conditions
of high oxygen concentration. Lower concentrations of TBHP
result in restricted conversion, while higher concentrations of
TBHP result in further oxidation. According to the experimental
results, 1.25 is the perfect TBHP : BzOH ratio for the best BzOH
transformation and BzH selectivity.63

4.1.5. The effect of time. Fig. 10A depicts the increasing
reaction time from 1 h to 7 h with increasing benzaldehyde
conversion from 28.5% to 92.8%. The hydrolysis of benzalde-
hyde resulted in a decrease in oxidizing selectivity. The optimal
time for the reaction was discovered to be 7 hours.

4.1.6. The effect of the different solvents. The literature
study revealed that the atmospheric liquid phase reaction,
which affects both the reaction kinetics and product selectivity,
plays numerous signicant roles in the solvent impact. The
protic solvent performs less well than the aprotic solvent in this
situation due to the higher concentration of substrate near the
catalyst's active sites. The solvent will become more polar and
aprotic as the substrate density rises, which is advantageous to
the catalytic process. Tert-butyl hydroperoxide (TBHP), chloro-
form, DMF, DCM, and acetonitrile are four distinct polarities of
aprotic solvents used in our investigation. The TBHP oxidant
produced the highest levels of benzaldehyde conversion and
selectivity, as seen in Fig. 10B. TBHP has the highest dipole
moment of all the oxidant examined. The conversion and
selectivity achieved by TBHP were 85% and 99%, respectively.

4.1.7. Recyclability studies. The stability of catalysts and
reusability is a crucial tools for industrial applications. The NFS-
15 catalyst's stability was examined under ideal conditions
(BzOH = 20 mmol, 5 wt% Ni and 2 wt% Fe/SBA-15 = 0.08 g,
25 mmol TBHP, 10 ml CH3CN, 90 °C, and 4 hours), and the
ndings are reported in Table 2. Once the reaction is accom-
plished, the catalyst is ltered out from the reaction mixture,
and the recovered catalyst is washed in ethanol before being
Table 3 Catalytic achievement of various catalysts in the oxidation of b

Catalyst entry
Catalyst
dose (g) Time (h) Temperatu

TiMCM-41-20Ph-2(55)a 0.1 3 50
Anion resin H3PW4O24 0.350 6 70
Ti(acac)-SBA-15 0.01 2 60
Ti(acac)-MCM-41 cal 0.01 2 60
10%Me-TiMCM-41NP 0.03 0.5 60
TiMCM-41 LP 0.03 2 70
Cu(II)-cyclamSBA-16 0.05 4 80
10 MeTiM-1 0.05 7 80
NFS-15 0.08 7 90

© 2024 The Author(s). Published by the Royal Society of Chemistry
dried at 110 °C in a hot air oven. The conversion of BzOH
decreases from 90.0 percent to 84.8 percent aer the h cycle,
and the selectivity also decreases from 97.5% to 93.6%. As
a result of catalyst loss during the recovery operations, selec-
tivity and conversion somewhat decline aer the h cycle. We
infer from the experiment that 5 wt% Ni, 2 wt% Fe, and SBA-15
are better catalysts for converting BzOH. The aforementioned
catalyst could be utilized on a large scale because it is easy to
create, yields a superior amount of product, is cost-effective,
and can be reused and recycled up to seven times.

4.1.8. Comparative catalytic activity. Studies on catalytic
activity looked into a variety of parameters, such as tempera-
ture, pressure, catalyst, metals, conversion, and selectivity, that
affected the oxidation of benzyl alcohol. An overview of the
research on benzyl alcohol oxidation that we are comparing is
provided in Table 3. In addition to being active, the catalyst
identied in the current analysis continued to outperform other
catalysts that have been reported.
5. Conclusion

Throughout this research, the efficacy of monometallic Ni sup-
ported on SBA-15 catalysts was compared to bimetallic Ni–Fe
supported on SBA-15 catalysts for the selective oxidation of
benzyl alcohol to benzaldehyde. A highly distributed Ni/FeSBA-15
catalyst based on SBA-15 was synthesized using the oleic acid
aided incipient wetness impregnation approach. The NFS-15
catalyst achieved the highest rate of conversion and product
selectivity. This could be as a result of the fact that NFS-15
exhibits a more synergistic interaction between Fe and Ni than
the other catalysts produced in this study. The NFS-15 catalyst
demonstrated 98% BzOH conversion and 99% BzH selectivity
under optimised conditions (TBH P : BzOH ratio – 1.25; catalyst
amount – 0.08 g; reaction temperature – 90 °C, reaction time 4 h).
The NFS-15 catalyst's recycling effectiveness was evaluated up to
7 cycles, and it was discovered that the catalytic activity was
sustained up to 7 cycles. This Ni and Fe loaded SBA-15 catalyst is
affordable and efficient from an industrial perspective when
compared to more costly metal catalysts. In terms of conversion,
selectivity, and reaction temperature, the NFS-15 is not only
better than other Ni-based catalysts mentioned in the literature,
but it also outperforms them.
enzyl alcohol reaction

re (°C) Conversion (%)
Selectivity (%)
to aldehyde References

72 86 64
92.4 98.1 65
19.9 19.3 66
8.1 7.5 67
8.4 13.4 68
5.7 10.3 69

47.3 3.6 70
45.8 74.76 71
93.5 97.5 This work
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