Issue 20, 2024

Bioinspired anion exchange membranes with dual steric cross-linking centers for industrial-scale water electrolysis

Abstract

OH transport through anion exchange membranes (AEMs) is influenced by the arrangement of ion channels. Inspired by the channel structure of pectin in plants, a precise molecular regulation approach has here been developed for designing high-performance AEMs. This approach utilizes two steric molecules, triptycene and 9,9′-spirobifluorene, as dual spatially cross-linking centers in AEMs. By incorporating both of these steric centers into poly(terphenyl piperidinium), the pore structure stability, ionic conductivity, and mechanical strength are further improved. This variant achieved a high OH conductivity of 197.4 mS cm−1 and a significantly low swelling ratio of 8.6% at 80 °C. These characteristics enable the use of AEM water electrolysis (AEM-WE) for the achievement of a current density of 8.4 A cm−2 at 2.0 V when using completely platinum group metal (PGM)-free catalysts. This device also demonstrated high performance by achieving a current density of 2.0 A cm−2 at a cell voltage of 1.77 V at 60 °C, along with excellent stability (aging rate of 0.077 mV h−1). It should be noted that an electrode cell based on a five-stacked-membrane, with a total flow-field area of 1250 cm2, has been used in the present study. In addition, this cell device allowed for a current density of 20 000 A m−2 at a cell voltage of 2.0 V. The molecular regulation approach developed here precisely represents a promising strategy for industrial applications of PGM-free AEM-WE systems.

Graphical abstract: Bioinspired anion exchange membranes with dual steric cross-linking centers for industrial-scale water electrolysis

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
04 Jun 2024
Accepted
02 Sep 2024
First published
13 Sep 2024

Energy Environ. Sci., 2024,17, 7816-7828

Bioinspired anion exchange membranes with dual steric cross-linking centers for industrial-scale water electrolysis

T. Tang, H. Lee, Z. Wang, Z. Li, L. Wang, D. Chen, W. Zheng, Q. Liu, L. He, G. Ding, Z. Tian and L. Sun, Energy Environ. Sci., 2024, 17, 7816 DOI: 10.1039/D4EE02428A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements