Multi-responsive CPL switches of carbon dots confined in chiral metal–organic frameworks

Abstract

Solid-state stimuli-responsive circularly polarized luminescent (CPL) materials hold significant potential for applications in 3D displays, multi-level encryption, and chiroptical devices. However, research on CPL switching in solid-state carbon dots (CDs) remains unexplored. Herein, we construct photo-switchable solid-state CD based CPL-active assemblies by simultaneously encapsulating both CDs and spiropyran (SP) into chiral metal–organic frameworks (CMOFs) as the host. It is found that the SP units in the CMOF@CD/SP assemblies exhibit a colorless closed-ring state and a blue open-ring state under alternating ultraviolet (UV) and visible light irradiation, which regulates the inactivation and activation of the photochromic fluorescence resonance energy transfer (FRET) process, respectively, between the CDs and the SP units, thereby enabling reversible photoswitching of both photoluminescence (PL) and CPL properties. Leveraging these reversible CPL switching properties, the assemblies are successfully applied to high-security 3D barcodes, chiral logic gates, and 3D printing for the first time, providing innovative solutions for information security and logic computing.

Graphical abstract: Multi-responsive CPL switches of carbon dots confined in chiral metal–organic frameworks

Supplementary files

Article information

Article type
Research Article
Submitted
23 May 2025
Accepted
10 Aug 2025
First published
12 Aug 2025

Mater. Chem. Front., 2025, Advance Article

Multi-responsive CPL switches of carbon dots confined in chiral metal–organic frameworks

G. Wang, X. Wang, P. Luo, X. Dong and C. Zhang, Mater. Chem. Front., 2025, Advance Article , DOI: 10.1039/D5QM00388A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements