Issue 10, 1999

Determination of equilibrium constant of alkylbenzenes binding to bovine serum albumin by solid phase microextraction

Abstract

Solid phase microextraction (SPME) coupled with GC has been applied to study the binding properties between bovine serum albumin (BSA) and volatile organic compounds such as benzene, toluene, ethylbenzene, propylbenzene and butylbenzene. Their protein–ligand equilibrium constants have been determined. The measurement of free and bound ligand concentrations in the aqueous solution was based on the equilibrium among the analyte in the fiber coating (Cf), headspace (Ch) and aqueous solution (Cs). The work demonstrated that SPME is a simple and effective method in the study of protein binding to measure the freely dissolved analyte concentration as well as the equilibrium constant. The theoretical aspect of the SPME applied to the equilibrium constant measurement in two-phase (liquid sample–fiber coating) and three-phase (liquid sample–headspace–fiber coating) systems has been thoroughly discussed. The results demonstrated that the interpretation of the calibration data is crucial to the determination of freely dissolved analyte concentration and the equilibrium constant especially when the sample volume is small. The error in the experimental system is discussed. It is demonstrated in this study that for the three-phase system the amount of the analyte partitioned in the headspace could be ignored only in certain circumstances, where the Henry’s law constant and the ratio between headspace volume and sample volume are sufficiently small.

Article information

Article type
Paper

Analyst, 1999,124, 1443-1448

Determination of equilibrium constant of alkylbenzenes binding to bovine serum albumin by solid phase microextraction

H. Yuan, J. Pawliszyn, R. Ranatunga and P. W. Carr, Analyst, 1999, 124, 1443 DOI: 10.1039/A904723I

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements