Issue 24, 1998

The adsorption properties of NaY zeolite for separation of aromatic triazoles

Abstract

The zeolite molecular sieve Na-Y was investigated for its ability to separate benzotriazole (BTZ) from tolyltriazole (TTZ). The method used was a liquid phase slurry where activated zeolite was added to a solvent mixture containing the components to be separated. The liquid samples were analysed by FTIR spectroscopy before and after the adsorption to determine the uptake of the components. The zeolite was shown to adsorb both the additives BTZ and TTZ. The solvent effects on the adsorption of BTZ were investigated showing that maximum uptake was achieved using diisopropyl ether, in preference to isobutyl acetate or 2,6 dimethylheptan-4-one. Increasing the experimental temperature indicated that the uptake of BTZ could be increased in the solvents isobutyl acetate and 2,6-dimethylheptan-4-one. It was shown that BTZ was preferentially adsorbed to TTZ, from mixtures of the two with a selectivity of the order of two.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans., 1998,94, 3777-3780

The adsorption properties of NaY zeolite for separation of aromatic triazoles

N. L. Singleton, K. D. Huddersman and M. I. Needham, J. Chem. Soc., Faraday Trans., 1998, 94, 3777 DOI: 10.1039/A806370B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements