Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 38, 2013
Previous Article Next Article

Elongated polystyrene spheres as resonant building blocks in anisotropic colloidal crystals

Author affiliations

Abstract

Colloidal crystals have gained increasing importance due to their fascinating ability to mold the flow of light and sound (heat). The characteristics of these ordered assemblies of particles are strongly determined by the respective building blocks, which require complete understanding of their physical properties. In this study the mechanical properties of stretched polystyrene colloids (spheroids) are addressed. The non-invasive technique of Brillouin light scattering captures the vibrational spectra at hypersonic (GHz) frequencies. Resolved eigenmodes are considered fingerprints of the particles' shape, size and composing materials. A single particle model is used to simulate the experimental data by calculation of all active modes and subsequent evaluation of their contribution to the spectrum. Compared to spheres (high symmetry) more modes contribute to the spectra that limit the resolution at very high frequencies, due to the lifted mode degeneracy. Knowing the nature of the principal modes of spheroids is a precondition to understand the phononic dispersion in the respective colloidal crystals, in particular those responsible for anticrossing interactions with the effective medium acoustic phonon.

Graphical abstract: Elongated polystyrene spheres as resonant building blocks in anisotropic colloidal crystals

Back to tab navigation

Supplementary files

Article information


Submitted
07 Apr 2013
Accepted
31 May 2013
First published
03 Jun 2013

This article is Open Access

Soft Matter, 2013,9, 9129-9136
Article type
Paper

Elongated polystyrene spheres as resonant building blocks in anisotropic colloidal crystals

D. Schneider, P. J. Beltramo, M. Mattarelli, P. Pfleiderer, J. Vermant, D. Crespy, M. Montagna, E. M. Furst and G. Fytas, Soft Matter, 2013, 9, 9129
DOI: 10.1039/C3SM50959A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements