Issue 12, 2020

Electron-enriched thione enables strong Pb–S interaction for stabilizing high quality CsPbI3 perovskite films with low-temperature processing

Abstract

Cesium lead iodide (CsPbI3) perovskite is a promising photovoltaic material with a suitable bandgap and high thermal stability. However, it involves complicated phase transitions, and black-phase CsPbI3 is mostly formed and stabilized at high temperatures (200–360 °C), making its practical application challenging. Here, for the first time, we have demonstrated a feasible route for growing high quality black-phase CsPbI3 thin films under mild conditions by using a neutral molecular additive of 4(1H)-pyridinethione (4-PT). The resulting CsPbI3 thin films are morphologically uniform and phase stable under ambient conditions, consisting of micron-sized grains with oriented crystal stacking. With a range of characterization experiments on intermolecular interactions, the electron-enriched thione group in 4-PT is distinguished to be critical to enabling a strong Pb–S interaction, which not only influences the crystallization paths, but also stabilizes the black-phase CsPbI3via crystal surface functionalization. The 4-PT based CsPbI3 achieves 13.88% power conversion efficiency in a p–i–n structured device architecture, and encapsulated devices can retain over 85% of their initial efficiencies after 20 days of storage in an ambient environment, which are the best results among fully low-temperature processed CsPbI3 photovoltaics.

Graphical abstract: Electron-enriched thione enables strong Pb–S interaction for stabilizing high quality CsPbI3 perovskite films with low-temperature processing

Supplementary files

Article information

Article type
Edge Article
Submitted
31 Dec 2019
Accepted
17 Feb 2020
First published
17 Feb 2020
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2020,11, 3132-3140

Electron-enriched thione enables strong Pb–S interaction for stabilizing high quality CsPbI3 perovskite films with low-temperature processing

X. Xu, H. Zhang, E. Li, P. Ru, H. Chen, Z. Chen, Y. Wu, H. Tian and W. Zhu, Chem. Sci., 2020, 11, 3132 DOI: 10.1039/C9SC06574A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements