Jump to main content
Jump to site search

Issue 55, 2020
Previous Article Next Article

NaBH4 induces a high ratio of Ni3+/Ni2+ boosting OER activity of the NiFe LDH electrocatalyst

Author affiliations

Abstract

Electrochemical water splitting is a promising way to produce hydrogen gas, but the sluggish kinetics of the oxygen evolution reaction (OER) extremely restrict the overall conversion efficiency of water splitting. Transition metal based LDHs (TM LDHs) are one of the most effective non-noble metal OER catalysts and have attracted wide interest, especially the nickel–iron LDH (NiFe LDH). The high valence Ni3+ species with a large coordination number play a vital role in OER catalysis. Herein, we report on a surprising discovery that reaction between NiFe LDH and NaBH4 with multi-hydrides induces vacancy formation around Fe3+ and enrichment in Ni3+, crucially activating the OER performance. The ratio of Ni3+/Ni2+ is found to be closely tied to the OER performance, nicely accounting for the leading role of Ni3+ ions in octahedral sites in electrocatalysis. Significantly, the NaBH4 treated NiFe LDH directly on nickel foam (NF), denoted as NaBH4–NiFe LDH@NF exhibited an outstanding OER performance with an overpotential of only 310 mV at 100 mA cm−2, and a Tafel slope of 47 mV dec−1. For the series of TM LDHs we studied with different metal combinations, the high valence metal ion is found to be positively related to OER performance.

Graphical abstract: NaBH4 induces a high ratio of Ni3+/Ni2+ boosting OER activity of the NiFe LDH electrocatalyst

Back to tab navigation

Supplementary files

Article information


Submitted
31 Jul 2020
Accepted
28 Aug 2020
First published
10 Sep 2020

This article is Open Access

RSC Adv., 2020,10, 33475-33482
Article type
Paper

NaBH4 induces a high ratio of Ni3+/Ni2+ boosting OER activity of the NiFe LDH electrocatalyst

Y. Wang, S. Tao, H. Lin, S. Han, W. Zhong, Y. Xie, J. Hu and S. Yang, RSC Adv., 2020, 10, 33475
DOI: 10.1039/D0RA06617F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements