Jump to main content
Jump to site search

Issue 21, 2016
Previous Article Next Article

Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods

Author affiliations

Abstract

We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips’ broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD's confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates.

Graphical abstract: Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods

Back to tab navigation

Supplementary files

Article information


Submitted
07 Jan 2016
Accepted
09 Mar 2016
First published
10 Mar 2016

Nanoscale, 2016,8, 11019-11026
Article type
Paper

Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods

M. Conroy, H. Li, G. Kusch, C. Zhao, B. Ooi, P. R. Edwards, R. W. Martin, J. D. Holmes and P. J. Parbrook, Nanoscale, 2016, 8, 11019
DOI: 10.1039/C6NR00116E

Social activity

Search articles by author

Spotlight

Advertisements