Volume 177, 2015

Negative hyperconjugation and red-, blue- or zero-shift in X–Z⋯Y complexes

Abstract

A generalized explanation is provided for the existence of the red- and blue-shifting nature of X–Z bonds (Z = H, halogens, chalcogens, pnicogens, etc.) in X–Z⋯Y complexes based on computational studies on a selected set of weakly bonded complexes and analysis of existing literature data. The additional electrons and orbitals available on Z in comparison to H make for dramatic differences between the H-bond and the rest of the Z-bonds. The nature of the X-group and its influence on the X–Z bond length in the parent X–Z molecule largely controls the change in the X–Z bond length on X–Z⋯Y bond formation; the Y-group usually influences only the magnitude of the effects controlled by X. The major factors which control the X–Z bond length change are: (a) negative hyperconjugative donation of electron density from X-group to X–Z σ* antibonding molecular orbital (ABMO) in the parent X–Z, (b) induced negative hyperconjugation from the lone pair of electrons on Z to the antibonding orbitals of the X-group, and (c) charge transfer (CT) from the Y-group to the X–Z σ* orbital. The exchange repulsion from the Y-group that shifts partial electron density at the X–Z σ* ABMO back to X leads to blue-shifting and the CT from the Y-group to the σ* ABMO of X–Z leads to red-shifting. The balance between these two opposing forces decides red-, zero- or blue-shifting. A continuum of behaviour of X–Z bond length variation is inevitable in X–Z⋯Y complexes.

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
26 Sep 2014
Accepted
11 Nov 2014
First published
05 Feb 2015

Faraday Discuss., 2015,177, 33-50

Author version available

Negative hyperconjugation and red-, blue- or zero-shift in X–Z⋯Y complexes

J. Joy, E. D. Jemmis and K. Vidya, Faraday Discuss., 2015, 177, 33 DOI: 10.1039/C4FD00183D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements