Jump to main content
Jump to site search

Issue 6, 2019
Previous Article Next Article

Powering sustainable development within planetary boundaries

Author affiliations

Abstract

The concept of planetary boundaries identifies a safe space for humanity. Current energy systems are primarily designed with a focus on total cost minimization and bounds on greenhouse gas emissions. Omitting planetary boundaries in energy systems design can lead to energy mixes unable to power our sustainable development. To overcome this conceptual limitation, we here incorporate planetary boundaries into energy systems models, explicitly linking energy generation with the Earth's ecological limits. Taking the United States as a testbed, we found that the least cost energy mix that would meet the Paris Agreement 2 degrees Celsius target still transgresses five out of eight planetary boundaries. It is possible to meet seven out of eight planetary boundaries concurrently by incurring a doubling of the cost compared to the least cost energy mix solution (1.3% of the United States gross domestic product in 2017). Due to the stringent downscaled planetary boundary on biogeochemical nitrogen flow, there is no energy mix in the United States capable of satisfying all planetary boundaries concurrently. Our work highlights the importance of considering planetary boundaries in energy systems design and paves the way for further research on how to effectively accomplish such integration in energy related studies.

Graphical abstract: Powering sustainable development within planetary boundaries

Back to tab navigation

Supplementary files

Article information


Submitted
21 Nov 2018
Accepted
21 Jan 2019
First published
24 Jan 2019

This article is Open Access

Energy Environ. Sci., 2019,12, 1890-1900
Article type
Paper

Powering sustainable development within planetary boundaries

I. M. Algunaibet, C. Pozo, Á. Galán-Martín, M. A. J. Huijbregts, N. Mac Dowell and G. Guillén-Gosálbez, Energy Environ. Sci., 2019, 12, 1890
DOI: 10.1039/C8EE03423K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements